886 resultados para Sensory liking
Resumo:
Background & Aims: Esophageal hypersensitivity is thought to be important in the generation and maintenance of symptoms in noncardiac chest pain (NCCP). In this study, we explored the neurophysiologic basis of esophageal hypersensitivity in a cohort of NCCP patients. Methods: We studied 12 healthy controls (9 women; mean age, 37.1 ± 8.7 y) and 32 NCCP patients (23 women; mean age, 47.2 ± 10 y). All had esophageal manometry, esophageal evoked potentials to electrical stimulation, and NCCP patients had 24-hour ambulatory pH testing. Results: The NCCP patients had reduced pain thresholds (PT) (72.1 ± 19.4 vs 54.2 ± 23.6, P = .02) and increased P1 latencies (P1 = 105.5 ± 11.1 vs 118.1 ± 23.4, P = .02). Subanalysis showed that the NCCP group could be divided into 3 distinct phenotypic classifications. Group 1 had reduced pain thresholds in conjunction with normal/reduced latency P1 latencies (n = 9). Group 2 had reduced pain thresholds in conjunction with increased (>2.5 SD) P1 latencies (n = 7), and group 3 had normal pain thresholds in conjunction with either normal (n = 10) or increased (>2.5 SD, n = 3) P1 latencies. Conclusions: Normal esophageal evoked potential latencies with reduced PT, as seen in group 1 patients, is indicative of enhanced afferent transmission and therefore increased esophageal afferent pathway sensitivity. Increased esophageal evoked potential latencies with reduced PT in group 2 patients implies normal afferent transmission to the cortex but heightened secondary cortical processing of this information, most likely owing to psychologic factors such as hypervigilance. This study shows that NCCP patients with esophageal hypersensitivity may be subclassified into distinct phenotypic subclasses based on sensory responsiveness and objective neurophysiologic profiles. © 2006 by the American Gastroenterological Association.
Resumo:
Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this chapter we outline a sensory-linguistic approach to the, study of reading skill development. We call this a sensory-linguistic approach because the focus of interest is on the relationship between basic sensory processing skills and the ability to extract efficiently the orthographic and phonological information available in text during reading. Our review discusses how basic sensory processing deficits are associated with developmental dyslexia, and how these impairments may degrade word-decoding skills. We then review studies that demonstrate a more direct relationship between sensitivity to particular types of auditory and visual stimuli and the normal development of literacy skills. Specifically, we suggest that the phonological and orthographic skills engaged while reading are constrained by the ability to detect and discriminate dynamic stimuli in the auditory and visual systems respectively.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.
Resumo:
A comprehensive and highly illustrated text providing a broad and invaluable overview of sensory systems at the molecular, cellular and neurophysiological level of vertebrates, invertebrates and prokaryotes. It retains a strong focus on human systems, and takes an evolutionary and comparative approach to review the mechanosenses, chemosenses, photosenses, and other sensory systems including those for detecting pain, temperature electric and magnetic fields etc. It incorporates exciting and significant new insights provided by molecular biology which demonstrate how similar the molecular architecture and physiology of sensory cells are across species and across sensory modality, often indicationg a common ancestry dating back over half a billion years. Written by a renowned author, with extensive teaching experience in the biology of sensory systems, this book includes: - Over 400 illustrations - Self–assessment questions - Full bibliography preceded by short bibliographical essays - Boxes containing useful supplementary material. It will be invaluable for undergraduates and postgraduates studying biology, zoology, animal physiology, neuroscience, anatomy, molecular biology, physiological psychology and related courses.
Resumo:
Excessive consumption of dietary fat is acknowledged to be a widespread problem linked to a range of medical conditions. Despite this, little is known about the specific sensory appeal held by fats and no previous published research exists concerning human perception of non-textural taste qualities in fats. This research aimed to address whether a taste component can be found in sensory perception of pure fats. It also examined whether individual differences existed in human taste responses to fat, using both aggregated data analysis methods and multidimensional scaling. Results indicated that individuals were able to detect both the primary taste qualities of sweet, salty, sour and bitter in pure processed oils and reliably ascribe their own individually-generated taste labels, suggested that a taste component may be present in human responses to fat. Individual variation appeared to exist, both in the perception of given taste qualities and in perceived intensity and preferences. A number of factors were examined in relation to such individual differences in taste perception, including age, gender, genetic sensitivity to 6-n-propylthiouracil, body mass, dietary preferences and intake, dieting behaviours and restraint. Results revealed that, to varying extents, gender, age, sensitivity to 6-n-propylthiouracil, dietary preferences, habitual dietary intake and restraint all appeared to be related to individual variation in taste responses to fat. However, in general, these differences appeared to exist in the form of differing preferences and levels of intensity with which taste qualities detected in fat were perceived, as opposed to the perception of specific taste qualities being associated with given traits or states. Equally, each of these factors appeared to exert only a limited influence upon variation in sensory responses and thus the potential for using taste responses to fats as a marker for issues such as over-consumption, obesity or eating disorder is at present limited.
Resumo:
The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at Aston University is a multi-channel system, unique in the United Kingdom. A bite bar head localisation and MRI co-registration strategy which enabled accurate and reproducible localisation of MEG data into cortical space was developed. This afforded the opportunity to study magnetic fields of the human cortex generated by stimulation of peripheral nerve, by stimulation of visceral sensory receptors and by those evoked through voluntary finger movement. Initially, a study of sensory-motor evoked data was performed in a healthy control population. The techniques developed were then applied to patients who were to undergo neurosurgical intervention for the treatment of epilepsy and I or space occupying lesions. This enabled both validation of the effective accuracy of source localisation using MEG as well as to determine the clinical value of MEG in presurgical assessment of functional localisation in human cortex. The studies in this thesis have demonstrated that MEG can repeatedly and reliably locate sources contained within a single gyrus and thus potentially differentiate between disparate gyral activation. This ability is critical in the clinical application of any functional imaging technique; which is yet to be fully validated by any other 'non-invasive' functional imaging methodology. The technique was also applied to the study of visceral sensory representation in the cortex which yielded important data about the multiple cortical representation of visceral sensory function.
Resumo:
The rodent ventrobasal (VB) thalamus receives sensory inputs from the whiskers and projects to the cortex, from which it receives reciprocal excitatory afferents. Much is known about the properties and functional roles of these glutamatergic inputs to thalamocortical neurons in the VB, but no data are available on how these afferents can affect thalamic glial cells. In this study, we used combined electrophysiological recordings and intracellular calcium ([Ca(2+)](i)) imaging to investigate glial cell responses to synaptic afferent stimulation. VB thalamus glial cells can be divided into two groups based on their [Ca(2+)](i) and electrophysiological responses to sensory and corticothalamic stimulation. One group consists of astrocytes, which stain positively for S100B and preferentially load with SR101, have linear current-voltage relations and low input resistance, show no voltage-dependent [Ca(2+)](i) responses, but express mGluR5-dependent [Ca(2+)](i) transients following stimulation of the sensory and/or corticothalamic excitatory afferent pathways. Cells of the other glial group, by contrast, stain positively for NG2, and are characterized by high input resistance, the presence of voltage-dependent [Ca(2+)](i) elevations and voltage-gated inward currents. There were no synaptically induced [Ca(2+)](i) elevations in these cells under control conditions. These results show that thalamic glial cell responses to synaptic input exhibit different properties to those of thalamocortical neurons. As VB astrocytes can respond to synaptic stimulation and signal to neighbouring neurons, this glial cell organization may have functional implications for the processing of somatosensory information and modulation of behavioural state-dependent thalamocortical network activities.
Resumo:
Sensory sensitivity is typically measured using behavioural techniques (psychophysics), which rely on observers responding to very large numbers of stimulus presentations. Psychophysics can be problematic when working with special populations, such as children or clinical patients, because they may lack the compliance or cognitive skills to perform the behavioural tasks. We used an auditory gap-detection paradigm to develop an accurate measure of sensory threshold derived from passively-recorded MEG data. Auditory evoked responses were elicited by silent gaps of varying durations in an on-going noise stimulus. Source modelling was used to spatially filter the MEG data and sigmoidal ‘cortical psychometric functions’ relating response amplitude to gap duration were obtained for each individual participant. Fitting the functions with a curve and estimating the gap duration at which the evoked response exceeded one standard deviation of the prestimulus brain activity provided an excellent prediction of psychophysical threshold. Thus we have demonstrated that accurate sensory thresholds can be reliably extracted from MEG data recorded while participants listen passively to a stimulus. Because we required no behavioural task, the method is suitable for studies of populations where variations in cognitive skills or vigilance make traditional psychophysics unsuitable.
Resumo:
The present study examines whether parental reports of child selective eating are associated with child anxiety and sensitivity to sensory stimuli in their environment. Parents of 95 children aged 5-10 completed questionnaires about child eating behavior, child anxiety and sensory sensitivity. Results indicated that both anxiety and sensory sensitivity were associated with selective eating. In addition, child sensory sensitivity fully mediated the relationship between anxiety and selective eating in children suggesting that it is greater sensitivity to sensory information which explains why more anxious children are more likely to be selective eaters. Further research is necessary to better understand these relationships and indicate whether gradual exposure interventions with children who are sensory sensitive may help to prevent or reduce selective eating. © 2012 Elsevier Ltd.