985 resultados para Semantic Web -- TFM
Resumo:
[ES] Uno de los cinco componentes de la arquitectura triskel, una base de datos NoSQL que trata de dar solución al problema de Big data de la web semántica, el gran número de identificadores de recursos que se necesitarían debido al creciente número de sitios web, concretamente el motor de gestión de ejecución de patrones basados en tripletas y en la tecnología RDF. Se encarga de recoger la petición de consulta por parte del intérprete, analizar los patrones que intervienen en la consulta en busca de dependencias explotables entre ellos, y así poder realizar la consulta con mayor rapidez además de ir resolviendo los diferentes patrones contra el almacenamiento, un TripleStore, y devolver el resultado de la petición en una tabla.
Resumo:
[ES] SPARQL Interpreter es uno de los cinco componentes de la Arquitectura Triskel, una arquitectura de software para una base de datos NoSQL que intenta aportar una solución al problema de Big Data en la web semántica. Este componente da solución al problema de la comunicación entre el lenguaje y el motor, interpretando las consultas que se realicen contra el almacenamiento en lenguaje SPARQL y generando una estructura de datos que los componentes inferiores puedan leer y ejecutar.
Resumo:
Electronic business surely represents the new development perspective for world-wide trade. Together with the idea of ebusiness, and the exigency to exchange business messages between trading partners, the concept of business-to-business (B2B) integration arouse. B2B integration is becoming necessary to allow partners to communicate and exchange business documents, like catalogues, purchase orders, reports and invoices, overcoming architectural, applicative, and semantic differences, according to the business processes implemented by each enterprise. Business relationships can be very heterogeneous, and consequently there are variousways to integrate enterprises with each other. Moreover nowadays not only large enterprises, but also the small- and medium- enterprises are moving towards ebusiness: more than two-thirds of Small and Medium Enterprises (SMEs) use the Internet as a business tool. One of the business areas which is actively facing the interoperability problem is that related with the supply chain management. In order to really allow the SMEs to improve their business and to fully exploit ICT technologies in their business transactions, there are three main players that must be considered and joined: the new emerging ICT technologies, the scenario and the requirements of the enterprises and the world of standards and standardisation bodies. This thesis presents the definition and the development of an interoperability framework (and the bounded standardisation intiatives) to provide the Textile/Clothing sectorwith a shared set of business documents and protocols for electronic transactions. Considering also some limitations, the thesis proposes a ontology-based approach to improve the functionalities of the developed framework and, exploiting the technologies of the semantic web, to improve the standardisation life-cycle, intended as the development, dissemination and adoption of B2B protocols for specific business domain. The use of ontologies allows the semantic modellisation of knowledge domains, upon which it is possible to develop a set of components for a better management of B2B protocols, and to ease their comprehension and adoption for the target users.
Resumo:
This thesis deals with Context Aware Services, Smart Environments, Context Management and solutions for Devices and Service Interoperability. Multi-vendor devices offer an increasing number of services and end-user applications that base their value on the ability to exploit the information originating from the surrounding environment by means of an increasing number of embedded sensors, e.g. GPS, compass, RFID readers, cameras and so on. However, usually such devices are not able to exchange information because of the lack of a shared data storage and common information exchange methods. A large number of standards and domain specific building blocks are available and are heavily used in today's products. However, the use of these solutions based on ready-to-use modules is not without problems. The integration and cooperation of different kinds of modules can be daunting because of growing complexity and dependency. In this scenarios it might be interesting to have an infrastructure that makes the coexistence of multi-vendor devices easy, while enabling low cost development and smooth access to services. This sort of technologies glue should reduce both software and hardware integration costs by removing the trouble of interoperability. The result should also lead to faster and simplified design, development and, deployment of cross-domain applications. This thesis is mainly focused on SW architectures supporting context aware service providers especially on the following subjects: - user preferences service adaptation - context management - content management - information interoperability - multivendor device interoperability - communication and connectivity interoperability Experimental activities were carried out in several domains including Cultural Heritage, indoor and personal smart spaces – all of which are considered significant test-beds in Context Aware Computing. The work evolved within european and national projects: on the europen side, I carried out my research activity within EPOCH, the FP6 Network of Excellence on “Processing Open Cultural Heritage” and within SOFIA, a project of the ARTEMIS JU on embedded systems. I worked in cooperation with several international establishments, including the University of Kent, VTT (the Technical Reserarch Center of Finland) and Eurotech. On the national side I contributed to a one-to-one research contract between ARCES and Telecom Italia. The first part of the thesis is focused on problem statement and related work and addresses interoperability issues and related architecture components. The second part is focused on specific architectures and frameworks: - MobiComp: a context management framework that I used in cultural heritage applications - CAB: a context, preference and profile based application broker which I designed within EPOCH Network of Excellence - M3: "Semantic Web based" information sharing infrastructure for smart spaces designed by Nokia within the European project SOFIA - NoTa: a service and transport independent connectivity framework - OSGi: the well known Java based service support framework The final section is dedicated to the middleware, the tools and, the SW agents developed during my Doctorate time to support context-aware services in smart environments.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
Obiettivo di questo lavoro di tesi è il perfezionamento di un sistema di Health Smart Home, ovvero un ambiente fisico (ad esempio un'abitazione) che incorpora una rete di comunicazione in grado di connettere apparecchi elettronici e servizi controllabili da remoto, con l'obiettivo di facilitare la vita ad anziani, malati o disabili nelle loro case. Questo lavoro di tesi mostrerà come è stato possibile realizzare tale sistema partendo dalle teorie e dalle tecnologie sviluppate per il Web Semantico, al fine di trasformare l'ambiente fisico in un Cyber Physical (Eco)System perfettamente funzionante.
Resumo:
Introduzione a tecniche di web semantico e realizzazione di un approccio in grado di ricreare un ambiente familiare di un qualsiasi motore di ricerca con funzionalità semantico-lessicali e possibilità di estrazione, in base ai risultati di ricerca, dei concetti e termini chiave che costituiranno i relativi gruppi di raccolta per i vari documenti con argomenti in comune.
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.
Resumo:
La produzione ontologica è un processo fondamentale per la crescita del Web Semantico in quanto le ontologie rappresentano i vocabolari formali con cui strutturare il Web of Data. Le notazioni grafiche ontologiche costituiscono il mezzo ideale per progettare ontologie OWL sensate e ben strutturate. Tuttavia la successiva fase di generazione ontologica richiede all'utente un fastidioso cambio sia di prospettiva sia di strumentazione. Questa tesi propone dunque GraMOS, Graffoo to Manchester OWL Syntax, un motore di trasformazione da modelli Graffoo a ontologie formali in grado di fondere le due fasi di progettazione e generazione ontologica.
Resumo:
Realizzazione di un database semantico in Java a partire da una sua versione in tecnologia OSGI. La trattazione è organizzata come segue: nel primo capitolo verranno introdotte nozioni generali sullo scenario di rilevanza e le tecnologie. Nel secondo capitolo si parlerà della SIB-O, introducendone l’architettura e le funzionalità. Il terzo capitolo descriverà il lavoro svolto ed infine il quarto capitolo riporterà i risultati di test di performance allo scopo di validare il lavoro svolto e caratterizzare l’efficienza dei prodotti software realizzati.
Resumo:
Tesi riguardante le differenze tra Semantic Web e Web Tradizionale
Resumo:
In questo elaborato viene presentata Semantic City Guide, un'applicazione mobile di guida turistica basata su Linked Open Data. Si vogliono presentare i principali vantaggi e svantaggi derivati dall'interazione tra sviluppo nativo di applicazioni mobili e tecnologie del Semantic Web. Il tutto verrà contestualizzato esaminando alcuni progetti di aziende ed enti statali operativi nel settore turistico e dell'informatica.
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.