995 resultados para Self-Optimization
Resumo:
This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.
Resumo:
A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
This paper provides a longitudinal, empirical view of the multifaceted and reciprocal processes of organizational learning in a context of self-managed teams. Organizational learning is seen as a social construction between people and actions in a work setting. The notion of learning as situated (Brown & Duguid 1989, Lave& Wenger 1991, Gherardi & al. 1998, Easterby-Smith & Araujo 1999, Abma 2003) opens up the possibility for placing the focus of research on learning in the community rather than in individual learning processes. Further, in studying processes in their social context, we cannot avoid taking power relations into consideration (Contu & Willmott 2003). The study is based on an action research with a methodology close to the ‘democratic dialogue’ presented by Gustavsen (2001). This gives a ground for research into how the learning discourse developed in the case study organization over a period of 5 years, during which time the company abandoned a middle management level of hierarchy and the teams had to figure out how to work as self-managed units. This paper discusses the (re)construction of power relations and its role in organizational learning. Power relations are discussed both in vertical and horizontal work relations. A special emphasis is placed on the dialectic between managerial aims and the space for reflection on the side of employees. I argue that learning is crucial in the search for the limits for empowerment and that these limits are negotiated both in actions and speech. This study unfolds a purpose-oriented learning process, constructing an open dialogue, and describes a favourable context for creative, knowledge building communities.
Resumo:
The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represent significant diagnostic challenges. SPECT/CT Image fusion can provide missing anatomical and bone structure information to functional imaging, which is particularly useful to increase diagnosis certainty of bone pathology. However, due to SPECT acquisition duration, patient’s involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We aimed at designing an ankle and foot immobilizing device and measuring its efficacy at improving image fusion. Methods: We enrolled 20 patients undergoing distal lower-limb SPECT/CT of the ankle and the foot with and without a foot holder. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomical landmarks also visible on bone scintigraphy. Analysis of variance was performed for statistical analysis. Results: The obtained absolute average difference without and with support was 5.1±5.2 mm (mean±SD) and 3.1±2.7 mm, respectively, which is significant (p<0.001). Conclusion: The introduction of the foot holder significantly decreases misalignment between SPECT and CT images, which may have clinical influence in the precise localization of foot and ankle pathology.
Resumo:
Rehabilitation is very important for in the results of treatment in individuals with multiple sclerosis. Rehabilitation processes occur through gradual changes. These changes integrate intrinsic and extrinsic mechanisms of the individual, promoting adaptations to the needs and activities of daily living according to individual goals. Recommendations for exercise in multiple sclerosis: these recommendations apply only to patients with EDSS less than 7; moderate intensity aerobic exercise for a total of 20 to 30 minutes, twice or three times for week; the resistance training with low or moderate intensity is well tolerated by patients with MS; associated with these exercises were recommended flexibility exercises of moderate intensity, as well as strengthening exercises. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in multiple sclerosis patients.
Resumo:
OBJECTIVE The objective of this study was to analyze the prevalence of diabetes in older people and the adopted control measures.METHODS Data regarding older diabetic individuals who participated in the Health Surveys conducted in the Municipality of Sao Paulo, SP, ISA-Capital, in 2003 and 2008, which were cross-sectional studies, were analyzed. Prevalences and confidence intervals were compared between 2003 and 2008, according to sociodemographic variables. The combination of the databases was performed when the confidence intervals overlapped. The Chi-square (level of significance of 5%) and the Pearson’s Chi-square (Rao-Scott) tests were performed. The variables without overlap between the confidence intervals were not tested.RESULTS The age of the older adults was 60-69 years. The majority were women, Caucasian, with an income of between > 0.5 and 2.5 times the minimum salary and low levels of schooling. The prevalence of diabetes was 17.6% (95%CI 14.9;20.6) in 2003 and 20.1% (95%CI 17.3;23.1) in 2008, which indicates a growth over this period (p at the limit of significance). The most prevalent measure adopted by the older adults to control diabetes was hypoglycemic agents, followed by diet. Physical activity was not frequent, despite the significant differences observed between 2003 and 2008 results. The use of public health services to control diabetes was significantly higher in older individuals with lower income and lower levels of education.CONCLUSIONS Diabetes is a complex and challenging disease for patients and the health systems. Measures that encourage health promotion practices are necessary because they presented a smaller proportion than the use of hypoglycemic agents. Public health policies should be implemented, and aimed mainly at older individuals with low income and schooling levels. These changes are essential to improve the health condition of older diabetic patients.
Resumo:
OBJECTIVE To analyze the association between negative self-rated health and indicators of health, wellbeing and sociodemographic variables in older adults. METHODS Cross-sectional study that used data from a population-based health survey with a probability cluster sample that was carried out in Campinas, SP, Southeastern Brazil,, in 2008 and 2009. The participants were older adults (≥ 60 years) and the dependent variable was self-rated health, categorized as: excellent, very good, good, bad and very bad. The adjusted prevalence ratios were estimated by means of Poisson multiple regression. RESULTS The highest prevalences of bad/very bad self-rated health were observed in the individuals who never attended school, in those with lower level of schooling, with monthly per capita family income lower than one minimum salary. Individuals who scored five or more in the physical health indicator also had bad self-rated health, as well as those who scored five or more in the Self-Reporting Questionnaire 20 and those who did not refer feeling happiness all the time. CONCLUSIONS The independent effects of material life conditions, physical and mental health and subjective wellbeing, observed in self-rated health, suggest that older adults can benefit by health policies supported by a global and integrative view of old age.
Resumo:
Penalty and Barrier methods are normally used to solve Nonlinear Optimization Problems constrained problems. The problems appear in areas such as engineering and are often characterised by the fact that involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. This means that optimization methods based on derivatives cannot net used. A Java based API was implemented, including only derivative-free optimizationmethods, to solve both constrained and unconstrained problems, which includes Penalty and Barriers methods. In this work a new penalty function, based on Fuzzy Logic, is presented. This function imposes a progressive penalization to solutions that violate the constraints. This means that the function imposes a low penalization when the violation of the constraints is low and a heavy penalisation when the violation is high. The value of the penalization is not known in beforehand, it is the outcome of a fuzzy inference engine. Numerical results comparing the proposed function with two of the classic penalty/barrier functions are presented. Regarding the presented results one can conclude that the prosed penalty function besides being very robust also exhibits a very good performance.
Resumo:
Search Optimization methods are needed to solve optimization problems where the objective function and/or constraints functions might be non differentiable, non convex or might not be possible to determine its analytical expressions either due to its complexity or its cost (monetary, computational, time,...). Many optimization problems in engineering and other fields have these characteristics, because functions values can result from experimental or simulation processes, can be modelled by functions with complex expressions or by noise functions and it is impossible or very difficult to calculate their derivatives. Direct Search Optimization methods only use function values and do not need any derivatives or approximations of them. In this work we present a Java API that including several methods and algorithms, that do not use derivatives, to solve constrained and unconstrained optimization problems. Traditional API access, by installing it on the developer and/or user computer, and remote API access to it, using Web Services, are also presented. Remote access to the API has the advantage of always allow the access to the latest version of the API. For users that simply want to have a tool to solve Nonlinear Optimization Problems and do not want to integrate these methods in applications, also two applications were developed. One is a standalone Java application and the other a Web-based application, both using the developed API.
Resumo:
Constraints nonlinear optimization problems can be solved using penalty or barrier functions. This strategy, based on solving the problems without constraints obtained from the original problem, have shown to be e ective, particularly when used with direct search methods. An alternative to solve the previous problems is the lters method. The lters method introduced by Fletcher and Ley er in 2002, , has been widely used to solve problems of the type mentioned above. These methods use a strategy di erent from the barrier or penalty functions. The previous functions de ne a new one that combine the objective function and the constraints, while the lters method treat optimization problems as a bi-objective problems that minimize the objective function and a function that aggregates the constraints. Motivated by the work of Audet and Dennis in 2004, using lters method with derivative-free algorithms, the authors developed works where other direct search meth- ods were used, combining their potential with the lters method. More recently. In a new variant of these methods was presented, where it some alternative aggregation restrictions for the construction of lters were proposed. This paper presents a variant of the lters method, more robust than the previous ones, that has been implemented with a safeguard procedure where values of the function and constraints are interlinked and not treated completely independently.
Resumo:
Constrained nonlinear optimization problems are usually solved using penalty or barrier methods combined with unconstrained optimization methods. Another alternative used to solve constrained nonlinear optimization problems is the lters method. Filters method, introduced by Fletcher and Ley er in 2002, have been widely used in several areas of constrained nonlinear optimization. These methods treat optimization problem as bi-objective attempts to minimize the objective function and a continuous function that aggregates the constraint violation functions. Audet and Dennis have presented the rst lters method for derivative-free nonlinear programming, based on pattern search methods. Motivated by this work we have de- veloped a new direct search method, based on simplex methods, for general constrained optimization, that combines the features of the simplex method and lters method. This work presents a new variant of these methods which combines the lters method with other direct search methods and are proposed some alternatives to aggregate the constraint violation functions.
Resumo:
Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Resumo:
Nonlinear Optimization Problems are usual in many engineering fields. Due to its characteristics the objective function of some problems might not be differentiable or its derivatives have complex expressions. There are even cases where an analytical expression of the objective function might not be possible to determine either due to its complexity or its cost (monetary, computational, time, ...). In these cases Nonlinear Optimization methods must be used. An API, including several methods and algorithms to solve constrained and unconstrained optimization problems was implemented. This API can be accessed not only as traditionally, by installing it on the developer and/or user computer, but it can also be accessed remotely using Web Services. As long as there is a network connection to the server where the API is installed, applications always access to the latest API version. Also an Web-based application, using the proposed API, was developed. This application is to be used by users that do not want to integrate methods in applications, and simply want to have a tool to solve Nonlinear Optimization Problems.
Resumo:
Electricity markets are systems for effecting the purchase and sale of electricity using supply and demand to set energy prices. Two major market models are often distinguished: pools and bilateral contracts. Pool prices tend to change quickly and variations are usually highly unpredictable. In this way, market participants often enter into bilateral contracts to hedge against pool price volatility. This article addresses the challenge of optimizing the portfolio of clients managed by trader agents. Typically, traders buy energy in day-ahead markets and sell it to a set of target clients, by negotiating bilateral contracts involving three-rate tariffs. Traders sell energy by considering the prices of a reference week and five different types of clients. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.