936 resultados para Seismic input
Resumo:
El presente trabajo es una contribución al estudio de la composición y dinámica de los grupos de investigación en el ámbito universitario. El enfoque novedoso que plantea es una estrategia de demarcación y análisis de grupos en perspectiva comparada entre los proyectos (inputs) y las coautorías (outputs). Combina técnicas bibliométricas y de análisis de redes sociales aplicadas a un estudio de caso: el Departamento de Bibliotecología de la Universidad Nacional de La Plata, Argentina, en el periodo 2000-2009
Resumo:
Concentrations and d34S and d13C values were determined on SO4, HCO3, CO2, and CH4 in interstitial water and gas samples from the uppermost 400 m of sediment on the Blake Outer Ridge. These measurements provide the basis for detailed interpretation of diagenetic processes associated with anaerobic respiration of electrons generated by organic- matter decomposition. The sediments are anaerobic at very shallow depths (<1 m) below the seafloor. Sulfate reduction is confined to the uppermost 15 m of sediment and results in a significant outflux of oxidized carbon from the sediments. At the base of the sulfate reduction zone, upward-diffusing CH4 is being oxidized, apparently in conjunction with SO4 reduction. CH4 generation by CO2 reduction is the most important metabolic process below the 15-m depth. CO2 removal is more rapid than CO2 input over the depth interval from 15 to 100 m, and results in a slight decrease in HCO3 concentration accompanied by a 40 per mil positive shift in d13C. The differences among coexisting CH4, CO2, and HCO3 are consistent with kinetic fractionation between CH4 and dissolved CO2, and equilibrium fractionation between CO2 and HCO3. At depths greater than 100 m, the rate of input of CO2 (d13C = -25 per mil) exceeds by 2 times the rate of removal of CO2 by conversion to CH4 (d13C of -60 to -65 per mil). This results in an increase of dissolved HCO3 concentration while maintaining d13C of HCO3 relatively constant at +10 per mil. Non-steady-state deposition has resulted in significantly higher organic carbon contents and unusually high (70 meq/l) pore-water alkalinities below 150 m. These high alkalinities are believed to be related more to spontaneous decarboxylation reactions than to biological processes. The general decrease in HCO3 concentration with constant d13C over the depth interval of 200 to 400 m probably reflects increased precipitation of authigenic carbonate. Input-output carbon isotope-mass balance calculations, and carbonate system equilibria in conjunction with observed CO2-CH4 ratios in the gas phase, independently suggest that CH4 concentrations on the order of 100 mmol/kg are present in the pore waters of Blake Outer Ridge sediments. This quantity of CH4 is believed to be insufficient to saturate pore waters and stabilize the CH4*6H2O gas hydrate. Results of these calculations are in conflict with the physical recovery of gas hydrate from 238 m, and with the indirect evidence (seismic reflectors, sediment frothing, slightly decreasing salinity and chlorinity with depth, and pressure core barrel observations) of gas-hydrate occurrence in these sediments. Resolution of this apparent conflict would be possible if CH4 generation were restricted to relatively thin (1-10 m) depth intervals, and did not occur uniformly at all depths throughout the sediment column, or if another methanogenic process (e.g., acetate fermentation) were a major contributor of gas.
Resumo:
We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.
Resumo:
High-resolution, multichannel seismic data collected across the Great Bahama Bank margin and the adjacent Straits of Florida indicate that the deposition of Neogene-Quaternary strata in this transect are controlled by two sedimentation mechanisms: (1) west-dipping layers of the platform margin, which are a product of sea-level-controlled, platform-derived downslope sedimentation; and (2) east- or north-dipping drift deposits in the basinal areas, which are deposited by ocean currents. These two sediment systems are active simultaneously and interfinger at the toe-of-slope. The prograding system consists of sigmoidal clinoforms that advanced the margin some 25 km into the Straits of Florida. The foresets of the clinoforms are approximately 600 m high with variable slope angles that steepen significantly in the Pleistocene section. The seismic facies of the prograding clinoforms on the slope is characterized by dominant, partly chaotic, cut-and-fill geometries caused by submarine canyons that are oriented downslope. In the basin axis, seismic geometries and facies document deposition from and by currents. Most impressive is an 800-m-thick drift deposit at the confluence of the Santaren Channel and the Straits of Florida. This "Santaren Drift" is slightly asymmetric, thinning to the north. The drift displays a highly coherent seismic facies characterized by a continuous succession of reflections, indicating very regular sedimentation. Leg 166 of the Ocean Drilling Program (ODP) drilled a transect of five deep holes between 2 and 30 km from the modern platform margin and retrieved the sediments from both the slope and basin systems. The Neogene slope sediments consist of peri-platform oozes intercalated with turbidites, whereas the basinal drift deposits consist of more homogeneous, fine-grained carbonates that were deposited without major hiatuses by the Florida Current starting at approximately 12.4 Ma. Sea-level fluctuations, which controlled the carbonate production on Great Bahama Bank by repeated exposure of the platform top, controlled lithologic alternations and hiatuses in sedimentation across the transect. Both sedimentary systems are contained in 17 seismic sequences that were identified in the Neogene-Quaternary section. Seismic sequence boundaries were identified based on geometric unconformities beneath the Great Bahama Bank. All the sequence boundaries could be traced across the entire transect into the Straits of Florida. Biostratigraphic age determinations of seismic reflections indicate that the seismic reflections of sequence boundaries have chronostratigraphic significance across both depositional environments.
Resumo:
We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks. Especially in the Bay of Biscay, such physical habitats may only be observed within canyons, where they are created by both long-term turbiditic and contouritic processes. Frequent observations of sand ripples on the seabed indicate the presence of a steady, but enhanced bottom current of about 40 cm/s. The occurrence of oysters also coincides with the interface between the Eastern North Atlantic Water and the Mediterranean Outflow Water. A combination of this water mass mixing, internal tide generation and a strong primary surface productivity may generate an enhanced nutrient flux, which is funnelled through the canyon. When the ideal environmental conditions are met, up to 100 individuals per m² may be observed. These deep-water oysters require a vertical habitat, which is often incompatible with the requirements of other sessile organisms, and are only sparsely distributed along the continental margins. The discovery of these giant oyster banks illustrates the rich biodiversity of deep-sea canyons and their underestimation as true ecosystem hotspots.
Resumo:
This study subdivides the Potter Cove, King George Island, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis includes in total 42 different environmental variables, interpolated based on samples taken during Australian summer seasons 2010/2011 and 2011/2012. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared and the most reasonable method has been applied. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested and 4, 7, 10 as well as 12 were identified as reasonable numbers for clustering the Potter Cove. Especially the results of 10 and 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
Seismic data acquired over the eastern shelf and margin of the South Orkney microcontinent, Antarctica, have shown a high-amplitude reflection lying at a sub-bottom two-way traveltime (TWT) of 0.5-0.8 s. There appear to be two causes for the reflection which apply in different parts of the shelf. The more widespread cause of the reflection is a break-up unconformity associated with the opening of Jane Basin to the east. This is clearly seen where reflections in the underlying sequence are discordant. In contrast, in Eotvos Basin and the southeastern part of Bouguer Basin, the high-amplitude reflection in places cuts across bedding and is interpreted to be caused by silica diagenesis. A post-cruise analysis of core samples from Site 696 in Eotvos Basin by X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the presence of a silica diagenetic front at 520-530 mbsf. The position of the unconformity at this site is uncertain, but probably coincides with a change of detrital input near 548 mbsf. Fluctuations of physical properties related to the depth of the diagenetic front are difficult to separate from those related to the variation of detrital composition over the same depth interval. Correlation of the drilling record with the seismic record is difficult but with a synthetic seismogram it is demonstrated that diagenesis is the probable cause of the high-amplitude reflection. In Bouguer Basin at Site 695 the depth of the high-amplitude reflection was not reached by drilling; however, the reflection is probably also caused by silica diagenesis because of the biogenic silica-rich composition of the sediments cored. The estimated temperatures and ages of the sediments at the depths of the high-amplitude reflections at Sites 695 and 696 compare favorably with similar data from other diagenetic fronts of the world. The high-amplitude reflection in Bouguer Basin is commonly of inverse polarity, possibly caused either by interference between reflections from several closely-spaced reflecting layers, such as chert horizons, or by free gas trapped near the diagenetic front.
Resumo:
The nearly continuous recovery of 0.5 km of generally fresh, layer 3 gabbroic rocks at Hole 735B, especially near the bottom of the section, presents scientists an unusual opportunity to study the detailed elastic properties of the lower oceanic crust. Extending compressional-wave and density shipboard measurements at room pressure, Vp and Vs were measured at pressures from 20 to 200 MPa using the pulse transmission method. All of the rocks exhibit significant increases in velocity with increasing pressure up to about 150 MPa, a feature attributed to the closing of microcrack porosity. Measured velocities reflect the mineralogical makeup and microstructures acquired during the tectonic history of Hole 735B. Most of the undeformed and unaltered gabbros are approximately 65:35 plagioclase/clinopyroxene rocks plus olivine or oxide minerals, and the observed densities and velocities are fully consistent with the Voigt-Reuss-Hill (VRH) averages of the component minerals and their proportions. Depending on their olivine content, the predominant olivine gabbros at 200 MPa have average Vp = 7.1 ± 0.2 km/s, Vs = 3.9 ± 0.1 km/s, and grain densities of 2.95 ± 0.5 g/cm3. The less abundant iron-titanium (Fe-Ti) oxide gabbros average Vp = 6.75 ± 0.15 km/s, Vs = 3.70 ± 0.1 km/s, and grain densities of 3.22 ± 0.05 g/cm3, reflecting the higher densities and lower velocities of oxide minerals compared to olivine. About 30% of the core is plastically deformed, and the densities and directionally averaged velocities of these shear-zone tectonites are generally consistent with those of the gabbros, their protoliths. Three sets of observations indicate that the shear-zone metagabbros are elastically anisotropic: (1) directional variations in Vp, both vertical and horizontal and with respect to foliation and lineation; (2) discrepancies among Vp values for the horizontal cores and the VRH averages of the component minerals and their mineral proportions, suggesting preferred crystallographic orientations of anisotropic minerals; and (3) variations of Vs of up to 7%, with polarization directions parallel and perpendicular to foliation. Optical inspection of thin sections of the same samples indicates that plagioclase feldspar, clinopyroxene, and amphibole typically display crystallographic-preferred orientations, and this, plus the elastic anisotropy of these minerals, suggests that preferred orientations are responsible for much of the observed anisotropy, particularly at high pressure. Alteration tends to be localized to brittle faults and brecciated zones, and typical alteration minerals are amphibole and secondary plagioclase, which do not significantly change the velocity-density relationships.