929 resultados para Secretion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothalamus in the lower part of the brain contains neurons that produce a small peptide, gonadotropin- releasing hormone (GnRH, LHRH), that regulates luteinizing hormone (LH) secretion by the anterior pituitary gland. Important functions of LH include induction of ovulation in preovulatory follicles during estrus and the luteinization of granulosa cells lining those collapsed follicles to form corpora lutea that produce progesterone during the luteal phase of the estrous cycle or during pregnancy. The production of progesterone by the corpus luteum conveys a negative feed-back action at the central nervous system (CNS) for further episodic secretion of GnRH and in turn, LH secretion. Gonadal removal (i.e., ovariectomy) allows a greater amount of LH secretion to occur during a prolonged period. The objectives of this study were to characterize the pattern of GnRH secretion in the cerebrospinal fluid (CSF) of the bovine third ventricle region of the hypothalamus, determine its correspondence with the tonic and surge release of LH in ovariectomized cows, and examine the dynamics of GnRH pulse release activity in response to known modulators of LH release (suckling, neuropeptide-Y [NPY]). In ovariectomized cows, both tonic release patterns and estradiol-induced surges of GnRH and LH were highly correlated. A 500-microgram dose of NPY caused an immediate cessation of LH pulses and decreased plasma concentrations of LH for at least 4 hours. This corresponded with a decrease in both GnRH pulse amplitude and frequency. In anestrous cows, GnRH pulse frequency did not change before and 48 to 54 hours after weaning on day 18 postpartum, but GnRH concentration and amplitudes of GnRH pulses increased in association with weaning and heightened secretion of LH. It is clear that high-frequency, highamplitude pulses of LH are accompanied by similar patterns of GnRH in CSF of adult cattle. Yet strong inhibitors of LH pulsatility, putatively acting at the level of the central nervous system (i.e., suckling) or at both the central nervous system and pituitary (NPY) levels, produced periods of discordance between GnRH and LH pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of superovulatory treatment (follicle stimulating hormone [FSH] versus human menopausal gonadotropin [HMG]) and of route of administration (intramuscular versus intravenous) of prostaglandin F2a (PGF2a) on hormonal profiles were determined in 32 Angus x Hereford heifers for breeding and subsequent embryo collection and transfer. Heifers were superstimulated either with FSH (total of 26 milligrams) or HMG (total of 1,050 international units) beginning on days 9 to 12 of an estrous cycle and PGF2a (40 milligrams) was administered at 60 and 72 hours after the beginning of superovulatory treatments. Heifers were artificially inseminated three times at 12-hour intervals beginning 48 hours after PGF2a treatment. Blood serum samples were collected immediately before treatments began and at frequent intervals until embryo collection 288 hours later. Concentrations of luteinizing hormone (LH) and FSH were not affected by hormone treatments, route of PGF2a injection, or interactions between them. Estradiol-17ß (E2-17ß) levels were higher in HMG- than in FSH-treated heifers 60 hours after gonadotropin treatment. Peak concentration of E2-17ß occurred earlier in HMGthan in FSH-treated heifers and earlier in heifers injected with PGF2a intramuscularly than those injected intravenously. Progesterone concentrations were not influenced by treatment or route of PGF2a administration. The progesterone:E2-17ß ratio was higher in FSH- than in HMG-treated heifers 24 hours after the LH peak. The high steroid hormone concentrations in superovulated beef heifers before and after ovulation may lead to asynchrony between stages of embryonic development, a situation that may interfere with the pregnancy outcome of superovulated embryos in recipient animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirement for growth hormone (GH) secretion by the anterior pituitary gland in beef calves is demonstrated by a complete lack of long bone-growth and muscle accretion after hypophysectomy (surgical removal of the pituitary gland). When the connecting link (hypophyseal stalk) to the basal region (hypothalamus) of the brain is surgically severed, long bone growth and body weight gain are greatly limited compared with sham-operated controls. This limited growth results from obliteration of episodic GH secretion and reduced basal blood concentration of the hormone compared with sham-operated controls. Thus, the hypophyseal stalk-transected (HST) calf provides an appropriate model to determine mechanisms by which hypothalamic neuropeptides from the brain regulate GH secretion, and thereby growth in the young calf. Neuropeptides have been isolated and characterized in bovine hypothalamus that stimulate GH secretion (GH-releasing hormone [GHRH]) or factor [GHRF] and inhibit GH secretion (GH release-inhibiting hormone [GHRIH] or somatostatin [SRIH]). A dose of .067 micrograms of GHRF per kilogram of body weight injected intravenously in HST calves abruptly increased plasma GH concentration to 55 nanograms per milliliter from the control period mean of 5 nanograms per milliliter. HST calves then were infused intravenously with .033 and .067 microgram somatostatin per kilogram of body weight, during which a pulse injection of .067 microgram of GHRF was administered. GH increase was limited to 9 and 5 micrograms per kilogram body weight during the .033- and .067 microgram SRIH infusions after GHRF; no GH rebound was observed after the SRIH was discontinued. GHRF from humans contains 40 to 44 amino acids. Rat hypothalamic GHRF analogs containing 29 to 32 amino acids elicited dose-dependent GH peak release in these HST calves. In 1977, Bowers and Monomy isolated novel GH releasing peptides consisting of only six amino acids; they caused GH release by isolated pituitary cells in culture and acute GH release when administered intravenously. We recently have utilized a novel nonpeptidyl GH secretagogue of low molecular weight in the pig to determine its mechanisms of action within the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to test the hypothesis that dopamine regulates prolactin (PRL) secretion by determining acute changes in catecholamine concentrations in hypophyseal portal blood of cattle and their relation to peripheral blood concentration of PRL in hypophyseal stalk-transected (HST) and sham-operated control (SOC). Holstein heifers were subjected to neurosurgery to collect hypophyseal portal blood with a stainless steel cannula designed with a cuff placed under the pituitary stalk and peripheral blood via a jugular vein catheter. PRL plasma concentration was measured by radioimmunoassay, and dopamine and norepinephrine in portal plasma by radioenzymatic assay. During anesthesia before HST or SOC, PRL plasma concentration ranged from 20–40 ng/ml throughout 255 minutes. PRL abruptly increased and remained above 90 ng/ml after HST, compared with a steady decrease to <20 ng/ml in SOC heifers throughout 440 minutes. Within 5 minutes after severing of the hypophyseal stalk, dopamine in portal blood (>8 ng/ml) was significantly increased (P<0.05) compared with peripheral blood (<2 ng/ml). Norepinephrine concentration in portal blood was significantly greater (P<0.05) than in peripheral blood during the first 60 minutes. The sustained high PRL level in peripheral plasma after severing the hypophyseal stalk stimulated hypothalamic dopamine secretion from hypophyseal portal vessels during the prolonged period of blood collection. Norepinephrine concentration in these cattle was greater in hypophyseal portal blood than in peripheral blood, implicating both an important hypothalamic source of the catecholamine as well as an adrenal gland contribution during anesthesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. RESULTS Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. CONCLUSIONS We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) delivers oncogenic T-DNA and effector proteins to susceptible plant cells. This leads to the formation of tumors termed Crown Galls. The VirB/D4 T4SS is comprised of 12 subunits (VirB1 to VirB11 and VirD4), which assemble to form two structures, a secretion channel spanning the cell envelope and a T-pilus extending from the cell surface. In A. tumefaciens, the VirB2 pilin subunit is required for assembly of the secretion channel and is the main subunit of the T-pilus. The focus of this thesis is to define key reactions associated with the T4SS biogenesis pathway involving the VirB2 pilin. Topology studies demonstrated that VirB2 integrates into the inner membrane with two transmembrane regions, a small cytoplasmic loop, and a long periplasmic loop comprised of covalently linked N and C termini. VirB2 was shown by the substituted cysteine accessibility method (SCAM) to adopt distinct structural states when integrated into the inner membrane and when assembled as a component of the secretion channel and the T-pilus. The VirB4 and VirB11 ATPases were shown by SCAM to modulate the structural state of membrane-integrated VirB2 pilin, and evidence was also obtained that VirB4 mediates extraction of pilin from the membrane. A model that VirB4 functions as a pilin dislocase by an energy-dependent mechanism was further supported by coimmunoprecipitation and osmotic shock studies. Mutational studies identified two regions of VirB10, an N-terminal transmembrane domain and an outer membrane-associated domain termed the antennae projection, that contribute selectively to T-pilus biogenesis. Lastly, characterization of a VirB10 mutant that confers a ‘leaky’ channel phenotype further highlighted the role of VirB10 in gating substrate translocation across the outer membrane as well as T-pilus biogenesis. Results of my studies support a working model in which the VirB4 ATPase catalyzes dislocation of membrane-integrated pilin, and distinct domains of VirB10 coordinate pilin incorporation into the secretion channel and the extracellular T-pilus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IV secretion (T4S) systems translocate DNA and protein effectors through the double membrane of Gram-negative bacteria. The paradigmatic T4S system in Agrobacterium tumefaciens is assembled from 11 VirB subunits and VirD4. Two subunits, VirB9 and VirB7, form an important stabilizing complex in the outer membrane. We describe here the NMR structure of a complex between the C-terminal domain of the VirB9 homolog TraO (TraO(CT)), bound to VirB7-like TraN from plasmid pKM101. TraO(CT) forms a beta-sandwich around which TraN winds. Structure-based mutations in VirB7 and VirB9 of A. tumefaciens show that the heterodimer interface is conserved. Opposite this interface, the TraO structure shows a protruding three-stranded beta-appendage, and here, we supply evidence that the corresponding region of VirB9 of A. tumefaciens inserts in the membrane and protrudes extracellularly. This complex structure elucidates the molecular basis for the interaction between two essential components of a T4S system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrobacterium VirB2 pilin is required for assembly of the VirB/VirD4 type IV secretion system (T4SS). The propilin is processed by signal sequence cleavage and covalent linkage of the N and C termini, and the cyclized pilin integrates into the inner membrane (IM) as a pool for assembly of the secretion channel and T pilus. Here, by use of the substituted cysteine accessibility method (SCAM), we defined the VirB2 IM topology and then identified distinct contributions of the T4SS ATPase subunits to the pilin structural organization. Labeling patterns of Cys-substituted pilins exposed to the membrane-impermeative, thiol-reactive reagent 3-(N-maleimidopropionyl)biocytin (MPB) supported a topology model in which two hydrophobic stretches comprise transmembrane domains, an intervening hydrophilic loop (residues 90 to 94) is cytoplasmic, and the hydrophilic N and C termini joined at residues 48 and 121 form a periplasmic loop. Interestingly, the VirB4 ATPase, but not a Walker A nucleoside triphosphate (NTP) binding motif mutant, induced (i) MPB labeling of Cys94, a residue that in the absence of the ATPase is located in the cytoplasmic loop, and (ii) release of pilin from the IM upon osmotic shock. These findings, coupled with evidence for VirB2-VirB4 complex formation by coimmunoprecipitation, support a model in which VirB4 functions as a dislocation motor to extract pilins from the IM during T4SS biogenesis. The VirB11 ATPase functioned together with VirB4 to induce a structural change in the pilin that was detectable by MPB labeling, suggestive of a role for VirB11 as a modulator of VirB4 dislocase activity.