988 resultados para Sea Benthic Fishes
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
A high-resolution biochronology is presented for the Late Quaternary of the central Mediterranean. In the Late Pleistocene-Holocene successions three assemblage zones are distinguished on the basis of frequency patterns of planktic foraminifera. The age of these zones is determined by Accelerator Mass Spectrometry (AMS)14C dating. The zonal boundaries are dated at 12,700 yr B.P. (the end of Termination Ia) and 9600 yr B.P. (the start of Termination Ib), respectively. The AMS dates show that major changes in the planktic and benthic realms occurred synchronously over wide areas, although records of individual species may show important regional differences. In the studied areas, resedimentation processes revealed by anomalous successions of14C dates, play a far more important role than indicated by the sedimentological and micropaleontological data. Possibly these processes contribute to the very high accumulation rates in the glacial Zone III. Although the AMS technique has increased the accuracy of14C-measurements, admixture of older carbonate may still lead to substantial age differences between areas with different sedimentary regimes.
Resumo:
Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100-595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March-June 2008) to open-water conditions in summer (June-August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 µm) varied significantly among sites (1.2-6.4 g C/m**2 in spring, 1.1-12.6 g C/m**2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9-33.2 mg C/m**2/day in spring, 11.6-44.4 mg C/m**2/day in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.
Resumo:
Benthic foraminifers of the Coniacian-Santonian through the Paleocene were recovered from a continuous pelagic carbonate section from Hole 516F on the Rio Grande Rise. Sixty-five genera and 153 species have been identified, most of which have been reported from other localities. Bathyal depths are reflected in the benthic assemblages dominated by gavelinellids (Gavelinella beccariiformis, G. velascoensis), Nuttallides truempyi, and various gyroidinids and buliminids. Rapid subsidence during the Coniacian-Santonian from nearshore to upper to middle bathyal depths was followed by much reduced subsidence, with the Campanian-Paleocene interval accumulating at middle bathyal to lower bathyal depths. A census study based on detailed sampling reveals major changes in benthic faunal composition at the Cretaceous/Tertiary boundary transition. It was a time of rapid turnover, with the extinctions of numerous species and the introduction of many new species. Overall, species diversity decreases about 20%, and approximately one-third of latest Maestrichtian species do not survive to the end of the Cretaceous. This shift indicates a significant environmental change in the deep sea, the precise nature of which is not apparent from the foraminifers or their enclosing sediments.
Resumo:
Mixed assemblages of Pliocene and Quaternary foraminifera occur within the Quaternary succession of the CRP-1 drillhole. Pliocene foraminifera are not present in the lowermost Unit 4.1. are rare in Unit 3.1 and 2.3, are relatively common in Units 2.2 and 2.1, and are absent in Unit 1.1. Fifteen and twelve species were documented in two of the samples from Units 2.2 and 2.1 respectively. A census count of foraminifera in a sample at 26.89 mbsf (Unit 2.2) indicated that 39% of the tests were from a Pliocene source, with the remaining 61% tests assigned to the in situ Quaternary assemblage. There appears to be a close correlation between the stratigraphic distribution of ice-rafted sediments and the test number and diversity of Pliocene taxa. It is concluded that Pliocene assemblages were not derived from submarine outcrops on Roberts Ridge, but are more likely to have been rafted to the site via major trunk valley drainage systems such as operated within the Mackay and Ferrar glacial valleys. The co-occurrence of marine biota (including foraminifera), fossil wood, pollen, and igneous clasts in the Quaternary succession of CRP-l, points to the marine and terrestrial facies of the Pliocene Sirius Group as a likely source. A major episode of erosion and transport of sediment into the offshore marine basins at about ~1 Ma may have been triggered by dynamism in the ice sheet-glacier system, an episode of regional uplift in the Transantarctic Mountains, sea level oscillations and associated changes in the land-to-sea drainage baselines, or some combination of these factors.