946 resultados para Saturated Clays
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The relationship between saturated hydraulic conductivity (Ks) and grain-size distribution was evaluated for 49 sites underlain by either glacially over consolidated or normally consolidated fluvio-glacial deposits in the Puget Lowland. A linear regression comprising pairs of grain-size analyses and pilot infiltration tests predicts Ks with a 1 sigma uncertainty of a factor of about 3.5 with 70% of the population variance accounted for. The correlation coefficient R^2 of about 0.90 shows that there is a strong correlation between the grain-size distribution and Ks. In contrast, a widely applied analysis proposed by Massmann (2003) explains only 20% of the population variance for normally consolidated materials with an R^2 of only 0.15. That analysis entirely fails to explain the population variance for over consolidated materials. The method developed in this study is recommended for determination of Ks for fluvio-glacial deposits of the Puget Lowland.
Resumo:
The combination of rainy climate, glaciolacustrine clays, and steep topography of the Puget Lowland creates slope stability issues for the regional population. Several glaciolacustrine deposits of laminated silt and clay of different ages contribute to the likelihood of slope failure. The glaciolacustrine deposits are generally wet, range in thickness from absent to >30m, and consist of laminated silt and clay with sand interbeds at the tops and bottoms, sandy laminae throughout the deposits, occasional dropstones and shear zones. The glaciolacustrine deposits destabilize slopes by 1) impeding groundwater flow percolating through overlying glacial outwash sediments, 2) having sandy laminae that lower strength by increasing pore pressure during wet seasons, and 3) increasing the potential for block-style failure because of secondary groundwater pathways such as laminae and vertical fractures. Eight clay samples from six known landslide deposits were analyzed in this study for their mineralogy, clay fraction and strength characteristics. The mineralogy was determined using X-ray Diffractometry (XRD) which revealed an identical mineralogic suite among all eight samples consisting of chlorite, illite and smectite. Nonclay minerals appearing in the X-ray diffractogram include amphibole and plagioclase after removal of abundant quartz grains. Hydrometer tests yielded clay-size fraction percentages of the samples ranging from 10% to 90%, and ring shear tests showed that the angle of residual shear resistance (phi_r) ranged from 11° to 31°. Atterberg limits of the samples were found to have liquid limits ranging from 33 to 83, with plastic limits ranging from 25 to 35 and plasticity indices ranging from 6 to 48. The results of the hydrometer and residual shear strength tests suggest that phi_r varies inversely with the clay-size fraction, but that this relationship was not consistent among all eight samples. The nature of the XRD analysis only revealed the identity of the clay minerals present in the samples, and provided no quantitative information. Thus, the extent to which the mineralogy influenced the strength variability among the samples cannot be determined given that the mineral assemblages are identical. Additional samples from different locations within each deposit along with quantitative compositional analyses would be necessary to properly account for the observed strength variability.
Resumo:
The convective instability of pore-fluid flow in inclined and fluid-saturated three-dimensional fault zones has been theoretically investigated in this paper. Due to the consideration of the inclined three-dimensional fault zone with any values of the inclined angle, it is impossible to use the conventional linear stability analysis method for deriving the critical condition (i.e., the critical Rayleigh number) which can be used to investigate the convective instability of the pore-fluid flow in an inclined three-dimensional fault zone system. To overcome this mathematical difficulty, a combination of the variable separation method and the integration elimination method has been used to derive the characteristic equation, which depends on the Rayleigh number and the inclined angle of the inclined three-dimensional fault zone. Using this characteristic equation, the critical Rayleigh number of the system can be numerically found as a function of the inclined angle of the three-dimensional fault zone. For a vertically oriented three-dimensional fault zone system, the critical Rayleigh number of the system can be explicitly derived from the characteristic equation. Comparison of the resulting critical Rayleigh number of the system with that previously derived in a vertically oriented three-dimensional fault zone has demonstrated that the characteristic equation of the Rayleigh number is correct and useful for investigating the convective instability of pore-fluid flow in the inclined three-dimensional fault zone system. The related numerical results from this investigation have indicated that: (1) the convective pore-fluid flow may take place in the inclined three-dimensional fault zone; (2) if the height of the fault zone is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone stabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; (3) if the thickness of the stratum is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone destabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; and that (4) the shape of the inclined three-dimensional fault zone may affect the convective instability of pore-fluid flow in the system. (C) 2004 Published by Elsevier B.V.
Resumo:
This paper describes recent advances made in computational modelling of the sugar cane liquid extraction process. The saturated fibro-porous material is rolled between circumferentially grooved rolls, which enhance frictional grip and provide a low-resistance path for liquid flow during the extraction process. Previously reported two-dimensional (2D) computational models, account for the large deformation of the porous material by solving the fully coupled governing fibre stress and fluid-flow equations using finite element techniques. While the 2D simulations provide much insight into the overarching cause-effect relationships, predictions of mechanical quantities such as roll separating force and particularly torque as a function of roll speed and degree of compression are not satisfactory for industrial use. It is considered that the unsatisfactory response in roll torque prediction may be due to the stress levels that exist between the groove tips and roots which have been largely neglected in the geometrically simplified 2D model. This paper gives results for both two- and three-dimensional finite element models and highlights their strengths and weaknesses in predicting key milling parameters. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The nanocomposites of general layered clays and metal sulfides could be produced from reactions of the layered clay aqueous suspensions and water-soluble metal-thiourea complexes. The clay could be saponite, montmorillonite, hectorite and laponite, while the metal sulfide could be cobalt sulfide, nickel sulfide, zinc sulfide, cadmium sulfide, and lead sulfide. In the nanocomposites, the clay could be incorporated with the metal sulfide pillars and metal sulfide nanoparticles. (c) 2006 Elsevier B.V. All rights reserved.