907 resultados para Safe drying regime
Resumo:
A complet factorial experimental design was applied to determinate the influence of the variable inlet air temperature, feed flow rate, and atomizer speed on the physical properties of the tomato pulp powder. Results showed that these variables had a significant positive effect on the moisture content, apparent density, and particle size and no significant effects on the porosity and true density. The best spray drying conditions to produce lower moisture content and higher apparent density tomato powder were inlet air temperature of 200 °C, feed flow rate of 276 g/min, and atomizer speed of 30000 rpm.
Resumo:
In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.
Resumo:
The sorption behavior of dry products is generally affected by the drying method. The sorption isotherms are useful to determine and compare thermodynamic properties of passion fruit pulp powder processed by different drying methods. The objective of this study is to analyze the effects of different drying methods on the sorption properties of passion fruit pulp powder. Passion fruit pulp powder was dehydrated using different dryers: vacuum, spray dryer, vibro-fluidized, and freeze dryer. The moisture equilibrium data of Passion Fruit Pulp (PFP) powders with 55% of maltodextrin (MD) were determined at 20, 30, 40 and 50 ºC. The behavior of the curves was type III, according to Brunauer's classification, and the GAB model was fitted to the experimental equilibrium data. The equilibrium moisture contents of the samples were little affected by temperature variation. The spray dryer provides a dry product with higher adsorption capacity than that of the other methods. The vibro-fluidized bed drying showed higher adsorption capacity than that of vacuum and freeze drying. The vacuum and freeze drying presented the same adsorption capacity. The isosteric heats of sorption were found to decrease with increasing moisture content. Considering the effect of drying methods, the highest isosteric heat of sorption was observed for powders produced by spray drying, whereas powders obtained by vacuum and freeze drying showed the lowest isosteric heats of sorption.
Resumo:
Microparticles obtained by complex coacervation were crosslinked with glutaraldehyde or with transglutaminase and dried using freeze drying or spray drying. Moist samples presented Encapsulation Efficiency (%EE) higher than 96%. The mean diameters ranged from 43.7 ± 3.4 to 96.4 ± 10.3 µm for moist samples, from 38.1 ± 5.36 to 65.2 ± 16.1 µm for dried samples, and from 62.5 ± 7.5 to 106.9 ± 26.1 µm for rehydrated microparticles. The integrity of the particles without crosslinking was maintained when freeze drying was used. After spray drying, only crosslinked samples were able to maintain the wall integrity. Microparticles had a round shape and in the case of dried samples rugged walls apparently without cracks were observed. Core distribution inside the particles was multinuclear and homogeneous and core release was evaluated using anhydrous ethanol. Moist particles crosslinked with glutaraldehyde at the concentration of 1.0 mM.g-1 protein (ptn), were more efficient with respect to the core retention compared to 0.1 mM.g-1 ptn or those crosslinked with transglutaminase (10 U.g-1 ptn). The drying processes had a strong influence on the core release profile reducing the amount released to all dry samples
Resumo:
Docosahexaenoic acid is an essential polyunsaturated fatty acid with important metabolic activities. Its conjugated double bonds make it susceptible to decomposition. Its stability may be improved through fatty acid entrapment with a spray-drying technique; however, the many parameters involved in this technique must be considered to avoid affecting the final product quality. Therefore, this study aimed to evaluate the entrapment conditions and yields of fish oil enriched with docosahexaenoic acid ethyl ester. Microcapsules were obtained from Acacia gum using a spray-drying technique. The experimental samples were analyzed by chromatography and delineated by Statistica software, which found the following optimum entrapment conditions: an inlet temperature of 188 °C; 30% core material; an N2 flow rate of 55 mm; and a pump flow rate of 12.5 mL/minute. These conditions provided a 66% yield of docosahexaenoic acid ethyl ester in the oil, corresponding to 19.8% of entrapped docosahexaenoic acid ethyl ester (w/w). This result was considered significant since 30% corresponded to wall material.
Resumo:
The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM), and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y) obtained, the higher the recirculation rates (x1), regardless of the air drying temperature (x2), and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb) under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD) presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05) in the Emulsifying Capacity (EC), Emulsion Stability (ES) and Protein Solubility (PS) between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.
Resumo:
The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai) feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C), in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36%) presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.
Resumo:
Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.
Resumo:
This study analyzed the drying process and the seed quality of adzuki beans (Vigna angularis). Grains of adzuki beans, with moisture content of 1.14 (decimal dry basis) at harvest and dried until the moisture content of 0.11 (decimal dry basis.) were used. Drying was done in an experimental drier maintened at controlled temperatures of 30, 40, 50, 60, and 70 ºC and relative humidity of 52.0, 28.0, 19.1, 13.1, and 6.8%, respectively. Physiological and technological seed quality was evaluated using the germination test, Index of Germination Velocity (IGV), electrical conductivity, and water absorption, respectively. Under the conditions tested in the present study, it can be concluded that drying time for adzuki beans decreases with the higher air temperatures of 60 and 70 ºC, and it affected the physiological and technological seed quality. Thus, to avoid compromising adzuki seeds quality, it is recommended to promote its drying up to 50 ºC.
Resumo:
Oats have received attention because of their nutritional characteristics, especially their high-quality content of β-glucan. The drying process reduces water content; therefore they can be preserved for long periods. However, high-temperature drying process may affect the physical, chemical, and functional properties of the grains. The objective of this study was to evaluate the effect of different drying temperatures on β-glucan quality in oat grains. Grains of oats (Avena sativa, L.), cultivar Albasul, harvested at harvest moisture content of 23% were submitted to stationary drying at air temperatures of 25, 50, 75, and 100 ºC until they reached 13% moisture content. The β-glucan content was determined in samples of oat grains and extraction was performed using water as solvent at 90 ºC. The β-glucan extract was evaluated for water holding capacity, water retention capacity, capacity of displacement, and gelation properties. Stationary of oat grains at air temperatures above 25 ºC decreased the water holding capacity, whereas the content of β-glucan and the water retention capacity of β-glucan extract was affected at temperatures above 50 ºC. Physical changes such as increased gelation capacity of the β-glucan extract occurred following drying at air temperature over 75 ºC.
Resumo:
The use of colorants in products of animal origin is justified by the improvement in the color of foods since this attribute is considered a quality criterion. These additives can be produced using industrial effluents as substrates and appropriate organisms, such as Rubrivivax gelatinosus. Oxycarotenoids represent a class of carotenes responsible for the pigmentation of animals and vegetables. R. gelatinosus grows in fish industry effluent with the resulting production of a bacterial biomass containing oxycarotenoids. The purpose of this study was to compare the use of two drying processes - spray and freeze drying - to obtain powder biomass in terms of the process parameters (yield, productivity, and product recovery) and the product characteristics (color, proximate composition, and oxycarotenoids). No difference was detected in the yield between these techniques, while productivity was higher using spray drying. Higher product recovery and moisture were achieved with freeze drying, while ash was higher with spray drying. The freeze dried biomass was redder, darker and less saturated than the spray dried biomass. No difference in oxycarotenoids was detected between the biomasses. Although it results in lower recovery rate, spray drying was faster and more productive, and it provided the same yield as freeze drying, which makes it the method of choice for obtaining R. gelatinosus biomass.
Resumo:
In this work, three freeze-dried (FD) egg products (whole egg (WE), egg yolk (EY) and egg white (EW)) were obtained and the acceptability of confections prepared with each was evaluated. Sensory analyses for confections were performed by hedonic testing with fifty panelists in each evaluation. The studied confections were: Condensed Milk Pudding (P), Quindim (Q) and Meringue (M). The results obtained for confections made with FD egg products were compared with the achieved through other formulations of the same desserts made with fresh (F) or spray-dried (SD) egg products. The sensory analysis results for confections made with FD egg products showed good acceptance by panelists. A principal component analysis of the sensory evaluation data was carried out to identify similarities between the different egg products. The PCA supported the conclusion that FD egg products can substitute their fresh and SD counterparts in dessert formulations with good acceptability while keeping the advantages conferred by the freeze-drying method.
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.
Resumo:
Spray drying is an important method used by the food industry in the production of microencapsulated flavors to improve handling and dispersion properties. The objective of this study was to evaluate the influence of the process conditions on the properties of rosemary essential oil microencapsulated by spray drying using gum Arabic as encapsulant. The effects of the wall material concentration (10-30%), inlet air temperature (135-195 ºC), and feed flow rate (0.5-1.0 L.h-1) on the moisture content, hygroscopicity, wettability, solubility, bulk and tapped densities, particle density, flowability, and cohesiveness were evaluated using a 2³ central composite rotational experimental design. Moisture content, hygroscopicity and wettability were significantly affected by the three factors analyzed. Bulk density was positively influenced by the wall material concentration and negatively by the inlet air temperature. Particle density was influenced by the wall material concentration and the inlet air temperature variables, both in a negative manner. As for the solubility, tapped density, flowability, and cohesiveness, the models did not fit the data well. The results indicated that moderate wall material concentration (24%), low inlet air temperature (135 ºC), and moderate feed flow rate (0.7 L.h-1) are the best spray drying conditions.
Resumo:
Potato pulp waste (PPW) drying was investigated under different experimental conditions (temperatures from 50 to 70 °C and air flow from 0.06 to 0.092 m³ m- 2 s- 1) as a possible way to recover the waste generated by potato chip industries and to select the best-fit model to the experimental results of PPW drying. As a criterion to evaluate the fitting of mathematical models, a method based on the sum of the scores assigned to the four evaluated statistical parameters was used: regression coefficient (R²), relative mean error P (%), root mean square error (RMSE), and reduced chi-square (χ²). The results revealed that temperature and air velocity are important parameters to reduce PPW drying time. The models Midilli and Diffusion had the lowest sum values, i.e., with the best fit to the drying data, satisfactorily representing the drying kinetics of PPW.