954 resultados para STRAND BREAK REPAIR
Resumo:
To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.
Resumo:
In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchange.
Resumo:
The Editors welcome topical correspondence from readers relating to articles published in the Journal. Responses should be sent electronically via the BJS website (www.bjs.co.uk). All letters will be reviewed and, if approved, appear on the website. A selection of these will be edited and published in the Journal. Letters must be no more than 250 words in length.
Resumo:
An ideal substitute to treat a nerve gap has not been found. Initially, silicone conduits were employed. Later, conduits were fabricated from collagen or polyesters carbonates. More recently, it has been shown that a bioresorbable material, poly-3-hydroxybutyrate (PHB), can enhance nerve repair. The present investigation shows the use of fibrin as a conduit to guide nerve regeneration and bridge nerve defects. In this study we prepared and investigated a novel nerve conduit made from fibrin glue. Using a rodent sciatic nerve injury model (10-mm gap), we compared the extent of nerve regeneration through the new fibrin conduits versus established PHB conduits. After 2 and 4 weeks, conduits containing proximal and distal stumps were harvested. We evaluated the initial axon and Schwann cell stimulation using immunohistochemistry. The conduits presented full tissue integration and were completely intact. Axons crossed the gap after 1 month. Immunohistochemistry using the axonal marker PGP 9.5 showed a superior nerve regeneration distance in the fibrin conduit compared with PHB (4.1 mm versus 1.9 mm). Schwann cell intrusion (S100 staining) was similarly enhanced in the fibrin conduits, both from the proximal (4.2 mm versus 2.1 mm) and distal ends (3.2 mm versus 1.7 mm). These findings suggest an advantage of the new fibrin conduit for the important initial phase of peripheral nerve regeneration. The use of fibrin glue as a conduit is a step toward a usable graft to bridge peripheral nerve lesions. This might be clinically interesting, given the widespread acceptance of fibrin glue among the surgical community.
Resumo:
OBJECTIVE: To review the presentation and evaluation of laryngotracheoesophageal clefts as well as their treatment modalities, especially endoscopic closure. STUDY DESIGN: retrospective case series. METHODS: All patients treated for laryngotracheoesophageal clefts in our clinic during the last 15 years were included. Analysis of preoperative data, surgical success and functional outcome was performed. RESULTS: A total of 18 patients were included in our study. Cleft distribution was: type I (n=1), type II (n=3), type IIIa (n=5), type IIIb (n=8) and type IVa (n=1). All clefts were closed endoscopically by CO2 laser repair except for two patients who benfited from open surgery (one type I, one type IIIb). 7 of our 18 patients (39%) experienced a complication necessitating reoperation. Surgical treatment of LTEC allowed cessation of feeding tube assistance and artificial ventilation in 47% and 42% of patients respectively. CONCLUSION: Surgical treatement of laryngotracheoesophageal clefts remains a complex procedure with a high rate of morbidity for high grade clefts. Post-surgical difficulties in feeding and breathing are associated with concomitant congenital anomalies. Endoscopic repair is a successful technique for treating up to grade IIIa laryngeal clefts. Further investigation is needed to assess the best approach for treating longer clefts.
Resumo:
Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing.
Resumo:
OBJECTIVES: The objectives of this study are to present the technique and results of endoscopic repair of laryngotracheoesophageal clefts (LTEC) extending caudally to the cricoid plate into the cervical trachea and to revisit the classification of LTEC. METHODS: The authors conducted a retrospective case analysis consisting of four infants with complete laryngeal clefts (extending through the cricoid plate in three cases and down into the cervical trachea in one case) treated endoscopically by CO2 laser incision of the mucosa and two-layer endoscopic closure of the cleft without postoperative intubation or tracheotomy. RESULTS: All four infants resumed spontaneous respiration without support after a mean postoperative period of 3 days with continuous positive airway pressure (CPAP). They accepted oral feeding within 5 postoperative days (range, 3-11 days). No breakdown of endoscopic repair was encountered. After a mean follow up of 48 months (range, 3 mos to 7 y), all children have a good voice, have no sign of residual aspiration, but experience a slight exertional dyspnea. CONCLUSION: This limited experience on the endoscopic repair of extrathoracic LTEC shows that a minimally invasive approach sparing the need for postoperative intubation or tracheotomy is feasible and safe if modern technology (ultrapulse CO2 laser, endoscopic suturing, and postoperative use of CPAP in the intensive care unit) is available.
Resumo:
Tässä diplomityössä käsitellään erikoispumppujen korjausprosessia teollisuuspumppujen korjauksiin erikoistuneessa konepajassa. Työn pääasiallinen tarkoitus on tuotantoprosessin kehittäminen ja tuotantovaiheiden esitteleminen. Tavoitteen taustalla on pyrkimys entisestään parantaa palvelukykyä ja asiakastyytyväisyyttä.Kolme eri keinoa päätavoitteen saavuttamiseksi ovat tuotannon suunnittelun ja ohjauksen kehittäminen, työssä käsiteltyjen pumpputyyppien korjausprosessien läpäisyaikojen lyhentäminen sekä korjausvaiheiden määrittely ja esittely vaihe vaiheelta. Työssä käsiteltyjä erikoispumpputyyppejä ovat imupumput, monijaksopumput sekä pysty/potkuripumput.Tuotannonsuunnittelun ja -ohjauksen kehittämiseksi sekä läpäisyaikojen lyhentämiseksi työssä etsittiin vaihtoehtoisia toimintatapoja. Kolmas tavoite, eli korjausvaiheiden määrittely, toteutettiin esittelemällä korjausprosessin vaiheet käsitellyillä pumpputyypeillä.Tuloksena saatiin keinoja tuotannon suunnittelun ja hallinnan kehittämiseksi. Useimmat keinot koskevat toimintatapojen selkiyttämistä. Myös keinoja läpäisyaikojen lyhentämiseksi löydettiin. Tietyllä imupumpputyypillä ja -koolla läpäisyajan lyheneminen oli 25 % ja osalla monijaksopumpuista jopa 75 %. Tulokset saavutetaan varastoimalla tiettyjä komponentteja, joilla on pitkä valmistus- tai korjausaika. Pysty/potkuripumppujen korjauksen läpäisyaikaa ei saatu lyhennettyä työn rajausten puitteissa Näiden tulosten lisäksi korjausprosessin toimintatavat määriteltiin.
Resumo:
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.
Resumo:
Severe combined immunodeficiency (SCID) and other severe non-SCID primary immunodeficiencies (non-SCID PID) can be treated by allogeneic hematopoietic stem cell (HSC) transplantation, but when histocompatibility leukocyte antigen-matched donors are lacking, this can be a high-risk procedure. Correcting the patient's own HSCs with gene therapy offers an attractive alternative. Gene therapies currently being used in clinical settings insert a functional copy of the entire gene by means of a viral vector. With this treatment, severe complications may result due to integration within oncogenes. A promising alternative is the use of endonucleases such as ZFNs, TALENs, and CRISPR/Cas9 to introduce a double-stranded break in the DNA and thus induce homology-directed repair. With these genome-editing tools a correct copy can be inserted in a precisely targeted "safe harbor." They can also be used to correct pathogenic mutations in situ and to develop cellular or animal models needed to study the pathogenic effects of specific genetic defects found in immunodeficient patients. This review discusses the advantages and disadvantages of these endonucleases in gene correction and modeling with an emphasis on CRISPR/Cas9, which offers the most promise due to its efficacy and versatility.