495 resultados para SOLITONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors describe the operation of an actively modelocked Er fibre laser incorporating a chrped in fibre Bragg reflection grating as one end mirror to the cavity, acting as a lumped highly dispersive element. In one oreientation the grating shifted the cavity into normal dispersion regime and pulses of -25ps duration were produced. In the opposite oreintation, the cavity dispersion was anomalous and ~8ps pulses were produced with characterisitics typical of solitons propagating in a periodically perturbed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the collective dynamics of a soliton train propagating in a medium described by the nonlinear Schrödinger equation. Our approach uses the reduction of train dynamics to the discrete complex Toda chain (CTC) model for the evolution of parameters for each train constituent: such a simplification allows one to carry out an approximate analysis of the dynamics of positions and phases of individual interacting pulses. Here, we employ the CTC model to the problem which has relevance to the field of fibre optics communications where each binary digit of transmitted information is encoded via the phase difference between the two adjacent solitons. Our goal is to elucidate different scenarios of the train distortions and the subsequent information garbling caused solely by the intersoliton interactions. First, we examine how the structure of a given phase pattern affects the initial stage of the train dynamics and explain the general mechanisms for the appearance of unstable collective soliton modes. Then we further discuss the nonlinear regime concentrating on the dependence of the Lax scattering matrix on the input phase distribution; this allows one to classify typical features of the train evolution and determine the distance where the soliton escapes from its slot. In both cases, we demonstrate deep mathematical analogies with the classical theory of crystal lattice dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review recent developments in the use of optical solitons for communication systems spanning transoceanic distances. The implementation of "soliton control" to alleviate the detrimental impact of effects such as amplifier noise is shown to be critical for obtaining advantages over competing technologies. The potential performance of two control strategies, namely straight line filtering and synchronous phase modulation, is examined in detail. Design diagrams are used to determine the maximum permissible amplifier spacing, which is a key determinant of system economics. To focus the enquiry, two example system spans are taken, representing transatlantic and transpacific distances. It is concluded that straight line filtering provides very little improvement over a basic design without control. However synchronous phase modulation, which may be implemented using a handful of actively driven components, provides very substantial benefits. These may be used either to extend the overall bit-rate-distance product of the system or to increase the amplifier spacing at more moderate capacities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersion managed solitons have been discovered to have some remarkable properties which indicate an outstanding opportunity for exploitation in transmission systems. This paper will review and interpret these discoveries and discuss the potential for WDM of these solitons for both long distance systems and for the upgrade of the installed fibre base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents results of transmission experiments using optical solitons in a dispersion managed optical fibre recirculating loop. The basic concepts of pulse propagation in optical fibre are introduced before optical solitons and their use in optically amplified fibre systems are discussed. The role of dispersion management in such systems is then considered. The design, operation and limitations of the recirculating loop and soliton sources which were used and the experimental techniques are described before the experimental work is presented. The experimental work covers a number of areas all of which used dispersion management of the transmission line. A novel ultra-long distance propagation scheme which achieved low timing jitter by suppression of the amplifier noise and by working close to the zero dispersion wavelength has been discovered. The use of fibre Bragg gratings as wavelength filters to suppress noise and reduce timing jitter has been investigated. The performance of the fibre grating cornpared favourably with that of a bulk device and was in good agreement with theoretical predictions. The upgrade of existing standard fibre systems to higher bit rates is currently an important issue. The possibility of using solitons with dispersion compensation to allow an increase in data rate of existing standard fibre systems to 10Gbit/s over 5000km has been demonstrated. The applicability of this technique to longer distances, higher bit rates or longer amplifier spans is also investigated by optimisation of the dispersion management scheme. The use of fibre Bragg gratings as the dispersion compensating elements in such standard fibre transmission experiments has been examined and the main problem that these devices currently have, high polarisation mode dispersion, is discussed. The likely future direction of optical communications and what part solitons and dispersion management will play in this development is discussed in the thesis conclusions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the results of numerical modelling of the propagation of dispersion managed solitons. The theory of optical pulse propagation in single mode optical fibre is introduced specifically looking at the use of optical solitons for fibre communications. The numerical technique used to solve the nonlinear Schrödinger equation is also introduced. The recent developments in the use of dispersion managed solitons are reviewed before the numerical results are presented. The work in this thesis covers two main areas; (i) the use of a saturable absorber to control the propagation of dispersion managed solutions and (ii) the upgrade of the installed standard fibre network to higher data rates through the use of solitons and dispersion management. Saturable absorbe can be used to suppress the build up of noise and dispersive radiation in soliton transmission lines. The use of saturable absorbers in conjunction with dispersion management has been investigated both as a single pulse and for the transmission of a 10Gbit/s data pattern. It is found that this system supports a new regime of stable soliton pulses with significantly increased powers. The upgrade of the installed standard fibre network to higher data rates through the use of fibre amplifiers and dispersion management is of increasing interest. In this thesis the propagation of data at both 10Gbit/s and 40Gbit/s is studied. Propagation over transoceanic distances is shown to be possible for 10Gbit/s transmission and for more than 2000km at 40Gbit/s. The contribution of dispersion managed solitons in the future of optical communications is discussed in the thesis conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents several advanced optical techniques that are crucial for improving high capacity transmission systems. The basic theory of optical fibre communications are introduced before optical solitons and their usage in optically amplified fibre systems are discussed. The design, operation, limitations and importance of the recirculating loop are illustrated. The crucial role of dispersion management in the transmission systems is then considered. Two of the most popular dispersion compensation methods - dispersion compensating fibres and fibre Bragg gratings - are emphasised. A tunable dispersion compensator is fabricated using the linear chirped fibre Bragg gratings and a bending rig. Results show that it is capable of compensating not only the second order dispersion, but also higher order dispersion. Stimulated Raman Scattering (SRS) are studied and discussed. Different dispersion maps are performed for all Raman amplified standard fibre link to obtain maximum transmission distances. Raman amplification is used in most of our loop experiments since it improves the optical signal-to-noise ratio (OSNR) and significantly reduces the nonlinear intrachannel effects of the transmission systems. The main body of the experimental work is concerned with nonlinear optical switching using the nonlinear optical loop mirrors (NOLMs). A number of different types of optical loop mirrors are built, tested and implemented in the transmission systems for noise suppression and 2R regeneration. Their results show that for 2R regeneration, NOLM does improve system performance, while NILM degrades system performance due to its sensitivity to the input pulse width, and the NALM built is unstable and therefore affects system performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis contains the results of experimental and numerical simulations of optical transmission systems using dispersion managed transmission techniques. Theoretical background is given on the propagation of pulses in optical fibres before extending the arguments to optical solitons, their applications and uses in communications. Dispersion management for transmission systems is introduced and then a brief explanation of quasi-linear pulse propagation is given. Techniques for performing laboratory transmission experiments are divulged and focus on the construction and operation of a recirculating loop. Laser sources and modulators for 40Gbit/s transmission rates are discussed and techniques for acquiring information from the resultant eye are explained.The operation of optically time division demultiplexing with a nonlinear elecro-absorption modulator is considered and then is replaced by the used of a linear electro-optic modulator and Dispersion unbalanced loop mirror (DILM). The use of nonlinearity as a positive effect for the use of processing and regenerating optical data is approached with an insight into the operation interferometers. Successful experimental results are given for the characterisation of the DILM and 40Gbit/ to l0Gbit/s demultiplexing is demonstrated.Modelling of a terrestrial style system is performed and the methods for computer simulation are discussed. The simulations model single channel 40Gbit/s transmission, 16 x 40Gbit/s WDM transmission and WDM transmission with varying channel separation. Three modulation formats are examined over the single mode fibre span. It is found that the dispersion managed soliton is not suitable for terrestrial style systems and that return-to-zero was the optimum format for the considered system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents improvements to optical transmission systems through the use of optical solitons as a digital transmission format, both theoretically and experimentally. An introduction to the main concepts and impairments of optical fibre on pulse transmission is included before introducing the concept of solitons in optically amplified communications and the problems of soliton system design. The theoretical work studies two fibre dispersion profiling schemes and a soliton launch improvement. The first provides superior pulse transmission by optimally tailoring the fibre dispersion to better follow the power, and hence nonlinearity, decay and thus allow soliton transmission for longer amplifier spacings and shorter pulse widths than normally possible. The second profiling scheme examines the use of dispersion compensating fibre in the context of soliton transmission over existing, standard fibre systems. The limits for solitons in uncompensated standard fibre are assessed, before the potential benefits of dispersion compensating fibre included as part of each amplifier are shown. The third theoretical investigation provides a simple improvement to the propagation of solitons in a highly perturbed system. By introducing a section of fibre of the correct length prior to the first system amplifier span, the soliton shape can be better coupled into the system thus providing an improved "average soliton" propagation model. The experimental work covers two areas. An important issue for soliton systems is pulse sources. Three potential lasers are studied, two ring laser configurations and one semiconductor device with external pulse shaping. The second area studies soliton transmission using a recalculating loop, reviewing the advantages and draw-backs of such an experiment in system testing and design. One particular example of employing the recirculating loop is also examined, using a novel method of pulse shape stabilisation over long distances with low jitter. The future for nonlinear optical communications is considered with the thesis conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines experimentally options for optical fibre transmission over oceanic distances. Its format follows the chronological evolution of ultra-long haul optical systems, commencing with opto-electronic regenerators as repeaters, progressing to optically amplified NRZ systems and finally solitonic propagation. In each case recirculating loop techniques are deployed to simplify the transmission experiments. Advances in high speed electronics have allowed regenerators operating at 10 Gbit/s to become a practical reality. By augmenting such devices with optical amplifiers it is possible to greatly enhance the repeater spacing. Work detailed in this thesis has culminated in the propagation of 10 Gbit/s data over 400,000 km with a repeater spacing of 160 km. System reliability and robustness are enhanced by the use of a directly modulated DFB laser transmitter and total insensitivity of the system to the signal state of polarisation. Optically amplified ultra-long haul NRZ systems have taken on particular importance with the impending deployment of TAT 12/13 and TPC 5. The performance of these systems is demonstrated to be primarily limited by analogue impairments such as the accumulation of amplifier noise, polarisation effects and optical non-linearities. These degradations may be reduced by the use of appropriate dispersion maps and by scrambling the transmitted state of signal polarisation. A novel high speed optically passive polarisation scrambler is detailed for the first time. At bit rates in excess of 10 Gbit/s it is shown that these systems are severely limited and do not offer the advantages that might be expected over regenerated links. Propagation using solitons as the data bits appears particularly attractive since the dispersive and non-linear effects of the fibre allow distortion free transmission. However, the generation of pure solitons is difficult but must be achieved if the uncontrolled transmission distance is to be maximised. This thesis presents a new technique for the stabilisation of an erbium fibre ring laser that has aUowed propagation of 2.5 Gbit/s solitons to the theoretical limit of ~ 18,000 km. At higher bit rates temporal jitter becomes a significant impairment and to aUow an increase in the aggregate line rate multiplexing in both time and polarisation domains has been proposed. These techniques are shown to be of only limited benefit in practical systems and ultimately some form of soliton transmission control is required. The thesis demonstrates synchronous retiming by amplitude modulation that has allowed 20 Gbit/s data to propagate 125,000 km error free with an amplifier spacing approaching the soliton period. Ultimately the speed of operation of such systems is limited by the electronics used and, thus, a new form of soliton control is demonstrated using all optical techniques to achieve synchronous phase modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the soliton propagation through a segment containing random pointlike scatterers. In the limit of small concentration of scatterers when the mean distance between the scatterers is larger than the soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmission through the segment. The method is applicable for any classical particle traversing through a disordered segment with the given velocity transformation after each act of scattering. In the case of weak scattering and relatively short disordered segment the transmission time delay of a fast soliton is mostly determined by the shifts of the soliton center after each act of scattering. For sufficiently long segments the main contribution to the delay is due to the shifts of the amplitude and velocity of a fast soliton after each scatterer. Corresponding crossover lengths for both cases of light and heavy solitons have been obtained. We have also calculated the exact probability density function of the soliton transmission time delay for a sufficiently long segment. In the case of weak identical scatterers the latter is a universal function which depends on a sole parameter—the mean number of scatterers in a segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that by optimizing the amplifier position in a two-stage dispersion map, the (dispersion-managed) soliton-soliton interaction can be reduced, enabling transmission of 10-Gbits-1 solitons over standard fiber over 16,000 km