972 resultados para SEMI-VOLATILE ORGANIC COMPOUNDS
Resumo:
Background: persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. Objective: to evaluate the influence of indoor air quality and contaminants on older people’s respiratory health. Design: cross-sectional study. Setting: 21 long-term care residences (LTC) in the city of Porto, Portugal. Subjects: older people living in LTC with ≥65 years old. Methods: the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. Results: cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (18%) the main selfreported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1–7.2). Conclusion: high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms.
Resumo:
Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.
Resumo:
A cross-sectional survey was conducted to characterize the indoor air quality (IAQ) in schools and its relationship with children's respiratory symptoms. Concentrations of volatile organic compounds (VOC), aldehydes, PM2.5, PM10, carbon dioxide, bacteria and fungi were assessed in 73 classrooms from 20 public primary schools located in Porto, Portugal. Children who attended the selected classrooms (n = 1134) were evaluated by a standardised health questionnaire completed by the legal guardians; spirometry and exhaled nitric oxide tests. The results indicated that no classrooms presented individual VOC pollutant concentrations higher than the WHO IAQ guidelines or by INDEX recommendations; while PM2.5, PM10 and bacteria levels exceeded the WHO air quality guidelines or national limit values. High levels of total VOC, acetaldehyde, PM2.5 and PM10 were associated with higher odds of wheezing in children. Thus, indoor air pollutants, some even at low exposure levels, were related with the development of respiratory symptoms. The results pointed out that it is crucial to take into account the unique characteristics of the public primary schools, to develop appropriate control strategies in order to reduce the exposure to indoor air pollutants and, therefore, to minimize the adverse health effects.
Resumo:
The main aim of the research project "On the Contribution of Schools to Children's Overall Indoor Air Exposure" is to study associations between adverse health effects, namely, allergy, asthma, and respiratory symptoms, and indoor air pollutants to which children are exposed to in primary schools and homes. Specifically, this investigation reports on the design of the study and methods used for data collection within the research project and discusses factors that need to be considered when designing such a study. Further, preliminary findings concerning descriptors of selected characteristics in schools and homes, the study population, and clinical examination are presented. The research project was designed in two phases. In the first phase, 20 public primary schools were selected and a detailed inspection and indoor air quality (IAQ) measurements including volatile organic compounds (VOC), aldehydes, particulate matter (PM2.5, PM10), carbon dioxide (CO2), carbon monoxide (CO), bacteria, fungi, temperature, and relative humidity were conducted. A questionnaire survey of 1600 children of ages 8-9 years was undertaken and a lung function test, exhaled nitric oxide (eNO), and tear film stability testing were performed. The questionnaire focused on children's health and on the environment in their school and homes. One thousand and ninety-nine questionnaires were returned. In the second phase, a subsample of 68 children was enrolled for further studies, including a walk-through inspection and checklist and an extensive set of IAQ measurements in their homes. The acquired data are relevant to assess children's environmental exposures and health status.
Resumo:
A poluição atmosférica é um dos principais factores de degradação da qualidade de vida da população. O conjunto BTEX (benzeno, tolueno, etilbenzeno e xilenos) constitui o grupo mais importante dos compostos orgânicos voláteis (VOCs) na atmosfera uma vez que participam na química da atmosfera e constituem um perigo para a saúde, nomeadamente o benzeno, por ser altamente cancerígeno. São maioritariamente libertados pelo tráfego automóvel. Neste trabalho foi determinada a concentração dos BTEX em nove pontos da cidade de Évora no período de 21 Março a 1 de Julho de 2009 tendo-se recorrido à técnica de amostragem passiva, com amostradores Radiello™, seguida de desadsorção líquida, usando CS2, e subsequente análise por GC-MS. A concentração de benzeno no ar da cidade de Évora não excedeu o valor legislado de 5 g/m3 neste período de amostragem, sendo as concentrações obtidas para os poluentes em geral muito baixas e na sua maioria inferiores ao LOQ do método analítico. ABSTRACT; Air pollution is the major factor in the degradation of the population quality of life. BTEX (benzene, toluene, ethylbenzene and xylenes) is the most important group of volatile organic compounds (VOCs) in the atmosphere because of their role in atmospheric chemistry and the risk they posed to human health, with benzene, being a highly carcinogenic compound. BTEX are released mainly by road traffic. Concentrations of BTEX were determined at nine sampling points in the city of Évora in the period from 21 March to 1 July 2009, using passive samplers Radiello™, followed by liquid desorption with CS2, and subsequent analysis by GC-MS. During the sampling period, the concentration of benzene in the outdoor air of Évora city did not exceed 5 g/m3, the maximum value admissible by legislation. The concentrations measured of the other pollutants were, in general, very low and mostly below the LOQ of the analytical method.
Resumo:
Post-consumer cooking oil and soft drink PET bottles (PEToil and PETsoft drink) were ground and washed only with water (conventional washing). The polymer was then chemically washed (10min in an aqueous solution of sodium hydroxide 5mol center dot L-1 at 90 degrees C) and rinsed. The materials before and after chemical washing were characterized by intrinsic viscosity, differential scanning calorimetry, thermogravimetry, elemental analysis, scanning electron microscopy with X-ray spectrum microanalysis, and gas chromatography coupled to mass spectrometry. The results indicated that conventionally washed PEToil is the material that most differs among the four tested ones, and that the other three are more similar to each other and to what is expected for pure PET. For example, the composition of PEToil washed only in water contained 30 volatile organic compounds, 5 nonvolatile compounds, and 7 metals, while PETsoft drink washed conventionally and chemically contained 5 volatile organic compounds and no metal or nonvolatile organic compounds.
Resumo:
Surface ozone is formed in the presence of NOx (NO + NO2) and volatile organic compounds (VOCs) and is hazardous to human health. A better understanding of these precursors is needed for developing effective policies to improve air quality. To evaluate the year-to-year changes in source contributions to total VOCs, Positive Matrix Factorization (PMF) was used to perform source apportionment using available hourly observations from June through August at a Photochemical Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. Results suggest that while gasoline and vehicle exhaust emissions have fallen, the contribution of natural gas sources to total VOCs has risen. To investigate this increasing natural gas influence, ethane measurements from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a period of decline, daytime ethane concentrations have increased significantly after 2009. This trend appears to be linked with the rapid shale gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Back-trajectory analyses similarly show that ethane concentrations at these monitors were significantly greater if air parcels had passed through counties containing a high density of unconventional natural gas wells. In addition to VOC emissions, the compressors and engines involved with hydraulic fracturing operations also emit NOx and particulate matter (PM). The Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality for the Eastern U.S. in 2020, including emissions from shale gas operations in the Appalachian Basin. Predicted concentrations of ozone and PM show the largest decreases when these natural gas resources are hypothetically used to convert coal-fired power plants, despite the increased emissions from hydraulic fracturing operations expanded into all possible shale regions in the Appalachian Basin. While not as clean as burning natural gas, emissions of NOx from coal-fired power plants can be reduced by utilizing post-combustion controls. However, even though capital investment has already been made, these controls are not always operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants limit NOx emissions to historically best rates.
Resumo:
Among the potentially polluting economic activities that compromise the quality of groundwater are the gas stations. The city of Natal has about 120 gas stations, of which only has an environmental license for operation. Discontinuities in the offices were notified by the Public Ministry of Rio Grande do Norte to carry out the environmental adaptations, among which is the investigation of environmental liabilities. The preliminary and confirmatory stages of this investigation consisted in the evaluation of soil gas surveys with two confirmatory chemical analysis of BTEX, PAH and TPH. To get a good evaluation and interpretation of results obtained in the field, it became necessary three-dimensional representation of them. We used a CAD software to graph the equipment installed in a retail service station fuel in Natal, as well as the plumes of contamination by volatile organic compounds. The tool was concluded that contamination is not located in the current system of underground storage of fuel development, but reflects the historical past in which tanks were removed not tight gasoline and diesel
Resumo:
Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.
Resumo:
Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through vapour intrusion (VI). Most conceptual and numerical models of VI assume that the transport of volatile organic compounds (VOCs) is a diffusion-limited process. Recently, alternate conditions have been identified that could lead to faster transport, including the presence of preferential pathways and methanogenic gas production. In this study, an additional mechanism that could lead to faster transport was investigated: bubble-facilitated VOC transport from LNAPL smear zones. A laboratory investigation was preformed using pentane in one-dimensional laboratory columns and two-dimensional visualization experiments. Results of the column experiments showed that average VOC mass fluxes in the bubble-facilitated columns were over two orders of magnitude greater than in the diffusion-limited columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport as bubbles expand, mobilize and are released to the vadose zone at various times during the test. The results from the visualization experiments showed gas fingers growing and mobilizing over time, which supports the findings of the column experiments. In conclusion, these results demonstrate the potential for bubble-facilitated VOC transport to affect mass transfer in LNAPL smear zones, and lead to increased indoor air concentrations by VI.
Resumo:
Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings.
Resumo:
The increasing consumption rates among citizens and the uncontrolled exploitation of natural resources have made environmental pollution and management of waste the main problems facing humanity in its upcoming future. Together with generation of energy and transport, industrial production certainly plays a key role in the genesis of these problems. It is for this reason that the concepts of environmental, social and economic sustainability have emerged over the years as the cornerstones for future development. In light of this, the most forward-looking industries have begun to study their impact on environment and society in order to improve their performances and, at the same time, to anticipate the increasingly rigorous environmental regulations. In this work, various performance indicators related to the Italian ceramic tile sector will be presented and discussed. In particular, the emission factor of characteristic pollutants will be reported on a period of up to fifteen years while data regarding waste management, concentration of pollutants and emission legal limits for the last decade will be here disclosed as a result of a vast analysis on recorded data. The collected information describes the present level of performance of the ceramic tile manufacturing industries in Italy and shows how recycling is now a consolidated reality and how some pollutants, such as particulate matter, fluorine and lead are actually disappearing from production processes and how others, such as volatile organic compounds, are increasing instead. Moreover, the adoption of alternative raw materials for the production of ceramic tiles is discussed and the implementation of the recycling of various waste is addressed at experimental or industrial scale. Finally, the development of a new ceramic engobe with high content of waste glass (20%) is presented as an experimental example of reutilization of resources in the ceramic tile industry.
Resumo:
To evaluate the potential for fermentation of raspberry pulp, sixteen yeast strains (S. cerevisiae and S. bayanus) were studied. Volatile compounds were determined by GC-MS, GC-FID, and GC-PFPD. Ethanol. glycerol and organic acids were determined by HPLC. HPLC-DAD was used to analyse phenolic acids. Sensory analysis was performed by trained panellists. After a screening step, CAT-1, UFLA FW 15 and S. bayanus CBS 1505 were previously selected based on their fermentative characteristics and profile of the metabolites identified. The beverage produced with CAT-1 showed the highest volatile fatty acid concentration (1542.6 mu g/L), whereas the beverage produced with UFLA FIN 15 showed the highest concentration of acetates (2211.1 mu g/L) and total volatile compounds (5835 mu g/L). For volatile sulphur compounds. 566.5 mu g/L were found in the beverage produced with S. bayanus CBS 1505. The lowest concentration of volatile sulphur compounds (151.9 mu g/L) was found for the beverage produced with UFLA FW 15. In the sensory analysis, the beverage produced with UFLA FW 15 was characterised by the descriptors raspberry, cherry, sweet, strawberry, floral and violet. In conclusion, strain UFLA FW 15 was the yeast that produced a raspberry wine with a good chemical and sensory quality. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.