945 resultados para SE(T) SPECIMEN
Resumo:
The mechanical behaviour of cohesive-frictional granular materials is a combination of the strength pervading as intergranular friction (represented as an angle of internal friction - Phi), and the cohesion (C) between these particles. Most behavioral or constitutive models of this class of granular materials comprise of a cohesion and frictional component with no regard to the length scale i.e. from the micro structural models through the continuum models. An experimental study has been made on a model granular material, viz. angular sand with different weights of binding agents (varying degrees of cohesion) at multiple length scales to physically map this phenomenon. Cylindrical specimen of various diameters - 10, 20, 38, 100, 150 mm (and with an aspect ratio of 2) are reconstituted with 2, 4 and 8% by weight of a binding agent. The magnitude of this cohesion is analyzed using uniaxial compression tests and it is assumed to correspond to the peak in the normalized stress-strain plot. Increase in the cohesive strength of the material is seen with increasing size of the specimen. A possibility of ``entanglement'' occurring in larger specimens is proposed as a possible reason for deviation from a continuum framework.
Resumo:
The primary objective of the present study is to show that for the most common configuration of an impactor system, the accelerometer cannot exactly reproduce the dynamic response of a specimen subjected to impact loading. An equivalent Lumped Parameter Model (LPM) of the given impactor set-up has been formulated for assessing the accuracy of an accelerometer mounted in a drop-weight impactor set-up for an axially loaded specimen. A specimen under the impact loading is represented by a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. Specimens made of steel, aluminium and fibre-reinforced composite (FRC) are used in the present study. Assuming the force-displacement response obtained in an actual impact test to be the true behaviour of the test specimen, a suitable numerical approach has been used to solve the governing non-linear differential equations of a three degrees-of-freedom (DOF) system in a piece-wise linear manner. The numerical solution of the governing differential equations following an explicit time integration scheme yields an excellent reproduction of the mechanical behaviour of the specimen, consequently confirming the accuracy of the numerical approach. However, the spring representing the accelerometer predicts a response that qualitatively matches the assumed force-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30 degrees apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.
Resumo:
In the present paper, the ultrasonic strain sensing performance of large-area piezoceramic coating with Inter Digital Transducer (IDT) electrodes is studied. The piezoceramic coating is prepared using slurry coating technique and the piezoelectric phase is achieved by poling under DC field. To study the sensing performance of the piezoceramic coating with IDT electrodes for strain induced by the guided waves, the piezoceramic coating is fabricated on the surface of a beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end. Often a wider frequency band of operation is needed for the effective implementation of the sensors in the Structural Health Monitoring (SHM) of various structures, for different types of damages. A wider frequency band of operation is achieved in the present study by considering the variation in the number of IDT electrodes in the contribution of voltage for the induced dynamic strain. In the present work, the fabricated piezoceramic coatings with IDT electrodes have been characterized for dynamic strain sensing applications using guided wave technique at various different frequencies. Strain levels of the launched guided wave are varied by varying the magnitude of the input voltage sent to the actuator. Sensitivity variation with the variation in the strain levels of guided wave is studied for the combination of different number of IDT electrodes. Piezoelectric coefficient e(11) is determined at different frequencies and at different strain levels using the guided wave technique.
Resumo:
Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.
Resumo:
The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.
Resumo:
The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
Uniaxial compression experiments were conducted on two magnesium (Mg) single crystals whose crystallographic orientations facilitate the deformation either by basal slip or by extension twinning. Specimen size effects were examined by conducting experiments on mu m- and mm-sized samples. A marked specimen size effect was noticed, with micropillars exhibiting significantly higher flow stress than bulk samples. Further, it is observed that the twin nucleation stress exerts strong size dependence, with micropillars requiring substantially higher stress than the bulk samples. The flow curves obtained on the bulk samples are smooth whereas those obtained from micropillars exhibit intermittent and precipitous stress drops. Electron backscattered diffraction and microstructural analyses of the deformed samples reveal that the plastic deformation in basal slip oriented crystals occurs only by slip while twin oriented crystals deform by both slip and twinning modes. The twin oriented crystals exhibit a higher strain hardening during plastic deformation when compared to the single slip oriented crystals. The strain hardening rate, theta, of twin oriented crystals is considerably greater in micropillars compared to the bulk single crystals, suggesting the prevalence of different work hardening mechanisms at these different sample sizes. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Geopolymers are an alternative binder to portland cement in the manufacture of mortars and concrete, as its three-dimensional aluminosilicate network imparts excellent mechanical properties. Use of geopolymers in place of ordinary portland cement is favored owing to the possible energy and carbon dioxide savings. River sand is another construction industry material that needs development of a sustainable alternate in India. Geopolymerization of fly ash amorphous silica mixtures is employed to produce fine aggregates as a possible replacement to river sand. Geopolymerization of fly ash amorphous silica mixtures in 10M NaOH solution at 100 degrees C for 7days produced fine aggregates termed fly ash geopolymer sand (FAPS)] that had comparable grain size distribution, specific gravity, and improved frictional resistance with river sand. The FAPS particles exhibited more alkaline pH (12.5) and higher total dissolved solids (TDS) concentration (TDS=747 mg/L) in comparison to the river sand specimen (pH=7.9 and TDS=32.5 mg/L). However, when used as fine aggregate in mortar, FAPS-mortar specimens develop similar pH, lower TDS, similar compressive strength, and modulus in relation to river sand-mortar specimens. The experimental results suggest that FAPS particles have the potential to replace river sand in the manufacture of mortar and concrete.
Resumo:
The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.
Resumo:
We developed a multiple light-sheet microscopy (MLSM) system capable of 3D fluorescence imaging. Employing spatial filter in the excitation arm of a SPIM system, we successfully generated multiple light-sheets. This improves upon the existing SPIM system and is capable of 3D volume imaging by simultaneously illuminating multiple planes in the sample. Theta detection geometry is employed for data acquisition from multiple specimen layers. This detection scheme inherits many advantages including, background reduction, cross-talk free fluorescence detection and high-resolution at long working distance. Using this technique, we generated 5 equi-intense light-sheets of thickness approximately 7: 5 mm with an inter-sheet separation of 15 mm. Moreover, the light-sheets generated by MLSM is found to be 2 times thinner than the state-of-art SPIM system. Imaging of fluorescently coated yeast cells of size 4 +/- 1 mm (encaged in Agarose gel-matrix) is achieved. Proposed imaging technique may accelerate the field of fluorescence microscopy, cell biology and biophotonics.
Resumo:
Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.
Resumo:
The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.
Resumo:
The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.