853 resultados para Runoff forecasting
Resumo:
O modelo OLAM tem como característica a vantagem de representar simultaneamente os fenômenos meteorológicos de escala global e regional através de um esquema de refinamento de grades. Durante o projeto REMAM, o modelo foi aplicado para alguns estudos de caso com objetivo de avaliar o desempenho do modelo na previsão numérica de tempo para a região leste da Amazônia. Estudos de caso foram feitos para os doze meses do ano de 2009. Os resultados do modelo para estes casos foram comparados com dados observados na região de estudo. A análise dos dados de precipitação mostrou que o modelo consegue representar a distribuição média da precipitação acumulada e os aspectos da sazonalidade da ocorrência dos eventos, mas não consegue prever individualmente a acumulação de precipitação local. No entanto, avaliação individual de alguns casos mostrou que o modelo OLAM conseguiu representar dinamicamente e prever, com alguns dias de antecedência, o desenvolvimento de fenômenos meteorológicos costeiros como as linhas de instabilidade, que são um dos mais importantes sistemas precipitantes da Amazônia.
Resumo:
The Box-Cox transformation is a technique mostly utilized to turn the probabilistic distribution of a time series data into approximately normal. And this helps statistical and neural models to perform more accurate forecastings. However, it introduces a bias when the reversion of the transformation is conducted with the predicted data. The statistical methods to perform a bias-free reversion require, necessarily, the assumption of Gaussianity of the transformed data distribution, which is a rare event in real-world time series. So, the aim of this study was to provide an effective method of removing the bias when the reversion of the Box-Cox transformation is executed. Thus, the developed method is based on a focused time lagged feedforward neural network, which does not require any assumption about the transformed data distribution. Therefore, to evaluate the performance of the proposed method, numerical simulations were conducted and the Mean Absolute Percentage Error, the Theil Inequality Index and the Signal-to-Noise ratio of 20-step-ahead forecasts of 40 time series were compared, and the results obtained indicate that the proposed reversion method is valid and justifies new studies. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aims at identifying the influence of soil surface roughness from small to large aggregates (random roughness) on runoff and soil loss and to investigate the interaction with soil surface seal formation. Bulk samples of a silty clay loam soil were sieved to four aggregate-size classes of 3 to 12, 12 to 20, 20 to 45, 45 to 100 mm, and packed in soil trays set at a 5% slope. Rainfall simulations using an oscillating nozzle simulator were conducted for 90 min at an average rainfall intensity of 50.2 mm h(-1). Soil surface roughness was measured using an instantaneous profile laser scanner and surface sealing was studied by macroscopic analysis of epoxy impregnated soil samples. The rainfall simulations revealed longer times to initiate runoff with increasing soil surface roughness. For random roughness levels up to 6 mm, a decrease in final runoff rate with increasing roughness was observed. This can be attributed to a decreased breakdown of the larger roughness elements on rougher surfaces, thus keeping infiltration rate high. For a random roughness larger than 6 mm, a greater final runoff rate was observed. This was caused by the creation of a thick depositional seal in the concentrated flow areas, thus lowering the infiltration rates. Analysis of impregnated soil sample blocks confirmed the formation of a structural surface seal on smooth surfaces, whereas thick depositional seals were visible in the depressional areas of rougher surfaces. Therefore, from our observations it can be learned that soil surface roughness as formed by the presence of different aggregate sizes reduces runoff but that its effect diminishes due to aggregate breakdown and the formation of thick depositional seals in the case of rough soil surfaces. Sediment concentration increased with increasing soil surface roughness, due to runoff concentration in flow paths. Nevertheless, final soil loss rates were comparable for all soil roughness categories, indicating that random roughness is only important in influencing runoff rates and the time to initiate runoff, but not in influencing sediment export through soil loss rates.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of São Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) to simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.
Resumo:
The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground) and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion)) while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks). The period of rainfall data collection was December 6, 2007 to April 11, 2008. A 21.1 cm diameter rain gauge was installed in the experimental area. Terraces were the most efficient practices for reducing erosion losses in the treatments with infiltration furrows being better than the control treatment. Bean was more effective than grass in reducing erosion. Bare ground was the least efficient.
Resumo:
Brazil is the largest sugarcane producer in the world and has a privileged position to attend to national and international market places. To maintain the high production of sugarcane, it is fundamental to improve the forecasting models of crop seasons through the use of alternative technologies, such as remote sensing. Thus, the main purpose of this article is to assess the results of two different statistical forecasting methods applied to an agroclimatic index (the water requirement satisfaction index; WRSI) and the sugarcane spectral response (normalized difference vegetation index; NDVI) registered on National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite images. We also evaluated the cross-correlation between these two indexes. According to the results obtained, there are meaningful correlations between NDVI and WRSI with time lags. Additionally, the adjusted model for NDVI presented more accurate results than the forecasting models for WRSI. Finally, the analyses indicate that NDVI is more predictable due to its seasonality and the WRSI values are more variable making it difficult to forecast.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
[EN] Background: Spain has gone from a surplus to a shortage of medical doctors in very few years. Medium and long-term planning for health professionals has become a high priority for health authorities. Methods: We created a supply and demand/need simulation model for 43 medical specialties using system dynamics. The model includes demographic, education and labour market variables. Several scenarios were defined. Variables controllable by health planners can be set as parameters to simulate different scenarios. The model calculates the supply and the deficit or surplus. Experts set the ratio of specialists needed per 1000 inhabitants with a Delphi method. Results: In the scenario of the baseline model with moderate population growth, the deficit of medical specialists will grow from 2% at present (2800 specialists) to 14.3% in 2025 (almost 21 000). The specialties with the greatest medium-term shortages are Anesthesiology, Orthopedic and Traumatic Surgery, Pediatric Surgery, Plastic Aesthetic and Reparatory Surgery, Family and Community Medicine, Pediatrics, Radiology, and Urology. Conclusions: The model suggests the need to increase the number of students admitted to medical school. Training itineraries should be redesigned to facilitate mobility among specialties. In the meantime, the need to make more flexible the supply in the short term is being filled by the immigration of physicians from new members of the European Union and from Latin America.
Resumo:
[EN]This paper describes a wildfi re forecasting application based on a 3D virtual environment and a fi re simulation engine. A novel open source framework is presented for the development of 3D graphics applications over large geographic areas, off ering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connection of several users for monitoring a real wildfi re event.
Resumo:
A new methodology is being devised for ensemble ocean forecasting using distributions of the surface wind field derived from a Bayesian Hierarchical Model (BHM). The ocean members are forced with samples from the posterior distribution of the wind during the assimilation of satellite and in-situ ocean data. The initial condition perturbations are then consistent with the best available knowledge of the ocean state at the beginning of the forecast and amplify the ocean response to uncertainty only in the forcing. The ECMWF Ensemble Prediction System (EPS) surface winds are also used to generate a reference ocean ensemble to evaluate the performance of the BHM method that proves to be eective in concentrating the forecast uncertainty at the ocean meso-scale. An height month experiment of weekly BHM ensemble forecasts was performed in the framework of the operational Mediterranean Forecasting System. The statistical properties of the ensemble are compared with model errors throughout the seasonal cycle proving the existence of a strong relationship between forecast uncertainties due to atmospheric forcing and the seasonal cycle.