941 resultados para Road traffic
Resumo:
An efficient passenger road transport system is a boon to any city and an inefficient one its bane. Passenger bus transport operation involves various aspects like passenger convenience, profitability of operation and social, technological and environmental factors. The author’s interest in this area was aroused when he conducted a traffic survey of Trivandrum City in 1979. While some studies on the performance of the Kerala State Road Transport Corporation in specific areas like finance, inventory control etc. have already been made, no study has been made from the operational point of view. The study is also the first one of its kind in dealing with the transportation problems for a second order city like Trivandrum. The objective of this research study is to develop a scientific basis for analysing and understanding the various operational aspects of urban bus transport management like assessing travel demand, depot location, fleet allocation, vehicle scheduling, maintenance etc. The operation of public road transportation in Trivandrum City is analysed on the basis of this theoretical background. The studies made have relevance to any medium sized city in India or even abroad. If not properly managed, deterioration of any public utility system is a natural process and it adversely affects the consumers, the economy and the nation. Making any system more efficient requires careful analysis, judicious decision making and proper implementation. It is hoped that this study will throw some light into the various operational aspects of urban passenger road transport management which can be of some help to make it perform more efficiently
Resumo:
Traffic collisions can be a major source of mortality in wild populations, and animals may be expected to exhibit behavioral mechanisms that reduce the risk associated with crossing roads. Animals living in urban areas in particular have to negotiate very dense road networks, often with high levels of traffic flow. We examined traffic-related mortality of red foxes (Vulpes vulpes) in the city of Bristol, UK, and the extent to which roads affected fox activity by comparing real and randomly generated patterns of movement. There were significant seasonal differences in the number of traffic-related fox deaths for different age and sex classes; peaks were associated with periods when individuals were likely to be moving through unfamiliar terrain and would have had to cross major roads. Mortality rates per unit road length increased with road magnitude. The number of roads crossed by foxes and the rate at which roads were crossed per hour of activity increased after midnight when traffic flow was lower. Adults and juveniles crossed 17% and 30% fewer roads, respectively, than expected from randomly generated movement. This highly mobile species appeared to reduce the mortality risk of minor category roads by changing its activity patterns, but it remained vulnerable to the effects of larger roads with higher traffic flows during periods associated with extraterritorial movements.
Resumo:
To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).
Resumo:
Interwar Britain witnessed the rapid rise of road transport as a serious competitor to the railways. This article examines road–rail competition for freight traffic. It demonstrates that, contrary to previous accounts—which have been highly critical of the railway companies—their failure to prevent rapid loss of traffic to the roads was the inevitable consequence of the regulatory framework under which the railways had been returned to private control in 1921. Given the constraints imposed by this framework, price competition with road hauliers would have further depressed railway company profits. Railway policy thus concentrated on pressing for a revision of the legislative framework governing road–rail competition.
Resumo:
The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.
Resumo:
Understanding how wildlife responds to road and traffic is essential for effective conservation. Yet, not many studies have evaluated how roads influence wildlife in protected areas, particularly within the large iconic African National Parks where tourism is mainly based on sightings from motorized vehicles with the consequent development and intense use of roads. To reduce this knowledge gap, we studied the behavioral response and local spatial distribution of impala Aepyceros melampus along the heterogeneous (with variation in road surface type and traffic intensity) road-network of Kruger National Park (KNP, South Africa). We surveyed different types of roads (paved and unpaved) recording the occurrence of flight responses among sighted impala and describing their local spatial distribution (in relation to the roads). We observed relatively few flight responses (19.5% of 118 observations), suggesting impalas could be partly habituated to vehicles in KNP. In addition, impala local distribution is apparently unaffected by unpaved roads, yet animals seem to avoid the close proximity of paved roads. Overall, our results suggest a negative, albeit small, effect of traffic intensity, and of presence of pavement on roads on the behavior of impala at KNP. Future studies would be necessary to understand how roads influence other species, but our results show that even within a protected area that has been well-visited for a long time, wildlife can still be affected by roads and traffic. This result has ecological (e.g., changes in spatial distribution of fauna) and management implications (e.g., challenges of facilitating wildlife sightings while minimizing disturbance) for protected areas where touristic activities are largely based on driving.
Resumo:
Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.
Resumo:
This report presents an algorithm for locating the cut points for and separatingvertically attached traffic signs in Sweden. This algorithm provides severaladvanced digital image processing features: binary image which representsvisual object and its complex rectangle background with number one and zerorespectively, improved cross correlation which shows the similarity of 2Dobjects and filters traffic sign candidates, simplified shape decompositionwhich smoothes contour of visual object iteratively in order to reduce whitenoises, flipping point detection which locates black noises candidates, chasmfilling algorithm which eliminates black noises, determines the final cut pointsand separates originally attached traffic signs into individual ones. At each step,the mediate results as well as the efficiency in practice would be presented toshow the advantages and disadvantages of the developed algorithm. Thisreport concentrates on contour-based recognition of Swedish traffic signs. Thegeneral shapes cover upward triangle, downward triangle, circle, rectangle andoctagon. At last, a demonstration program would be presented to show howthe algorithm works in real-time environment.
Resumo:
The aim of this thesis project is to develop the Traffic Sign Recognition algorithm for real time. Inreal time environment, vehicles move at high speed on roads. For the vehicle intelligent system itbecomes essential to detect, process and recognize the traffic sign which is coming in front ofvehicle with high relative velocity, at the right time, so that the driver would be able to pro-actsimultaneously on instructions given in the Traffic Sign. The system assists drivers about trafficsigns they did not recognize before passing them. With the Traffic Sign Recognition system, thevehicle becomes aware of the traffic environment and reacts according to the situation.The objective of the project is to develop a system which can recognize the traffic signs in real time.The three target parameters are the system’s response time in real-time video streaming, the trafficsign recognition speed in still images and the recognition accuracy. The system consists of threeprocesses; the traffic sign detection, the traffic sign recognition and the traffic sign tracking. Thedetection process uses physical properties of traffic signs based on a priori knowledge to detect roadsigns. It generates the road sign image as the input to the recognition process. The recognitionprocess is implemented using the Pattern Matching algorithm. The system was first tested onstationary images where it showed on average 97% accuracy with the average processing time of0.15 seconds for traffic sign recognition. This procedure was then applied to the real time videostreaming. Finally the tracking of traffic signs was developed using Blob tracking which showed theaverage recognition accuracy to 95% in real time and improved the system’s average response timeto 0.04 seconds. This project has been implemented in C-language using the Open Computer VisionLibrary.
Resumo:
Colour segmentation is the most commonly used method in road signs detection. Road sign contains several basic colours such as red, yellow, blue and white which depends on countries.The objective of this thesis is to do an evaluation of the four colour segmentation algorithms. Dynamic Threshold Algorithm, A Modification of de la Escalera’s Algorithm, the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm. The processing time and segmentation success rate as criteria are used to compare the performance of the four algorithms. And red colour is selected as the target colour to complete the comparison. All the testing images are selected from the Traffic Signs Database of Dalarna University [1] randomly according to the category. These road sign images are taken from a digital camera mounted in a moving car in Sweden.Experiments show that the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm are more accurate and stable to detect red colour of road signs. And the method could also be used in other colours analysis research. The yellow colour which is chosen to evaluate the performance of the four algorithms can reference Master Thesis of Yumei Liu.
Resumo:
The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance. The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design. An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified. Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types.
Resumo:
GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.
Resumo:
Maintenance planning of road pavement requires reliable estimates of roads’ lifetimes. In determining the lifetime of a road, this study combines maintenance activities and road condition measurements. The scope of the paper is to estimate lifetimes of road pavements in Sweden with time to event analysis. The model used includes effects of pavement type, road type, bearing capacity, road width, speed limit, stone size and climate zone, where the model is stratified according to traffic load. Among the nine analyzed pavement types, stone mastic had the longest expected lifetime, 32 percent longer than asphalt concrete. Among road types, ordinary roads with cable barriers had 30 percent shorter lifetime than ordinary roads. Increased speed lowered the lifetime, while increased stone size (up to 20 mm) and increased road width lengthened the lifetime. The results are of importance for life cycle cost analysis and road management.
Resumo:
GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)