972 resultados para Reticulum endoplasmique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A. peregrina var. falcata form mutualistic symbiosis with arbuscular mycorrhizal fungus. An anatomical and ultrastructural study was carried out to analyze some aspects of this simbiotic association as well as some root features. The results evidenced the presence of fibers with non-lignified thicked secondary walls in the stele and sparse papillae on root surface. A. peregrina var. falcata mycorrhizas presented features of Arum-type (intercellular hyphae) and Paris-type (extensive coils) arbuscular mycorrhiza. Their general appearance with extraradical hyphae, intracellular coils, intercellular hyphae and arbuscules, is in agreement with arbuscular mycorrhizas of several plants. The ultrastructural observations showed that in intercellular hyphae and arbuscules vacuoles were dominant and that in rough endoplasmatic reticulum and small vesicles seems to be associated with arbuscule senescence process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a comparative study of the ultrastructural characteristics of the cells involved in the organogenesis in vitro of Bauhinia forficata Link (indirect system) and Glycine max (L.) Merrill (direct system). B. forficata calli after 30 days culture and G. max meristemoids after 10 days culture were prepared for ultrastructural analysis using conventional methods. Concentrically arranged rough endoplasmic reticulum (RER) and plastids containing starch grains were seen during G. max and B. forficata organogenesis. The amitotic process, the presence of plastids around the nucleus and nuclear envelope with conspicuous pores were found in B. forficata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the extrafloral nectary (EFN) of Hibiscus pernambucensis, a native shrub species occurring in mangrove and restinga along Brazil's coastline. EFNs occur as furrows with a protuberant border on the abaxial surface veins of the leaf blade. Each nectary consists of numerous secretory multicellular trichomes, epidermal cells in palisade-like arrangements and non-vascularized parenchyma tissue. Nectar secretion is prolonged, since secretion starts in very young leaves and remains up to completely expanded leaves. Reduced sugars, lipids, and proteins were histochemically detected in all the nectary cells; phenolic substances were detected in the vacuoles of the epidermal palisade cells and in some secretory trichome cells. The secretory cells that constitute the body of trichomes have large nuclei, dense cytoplasm with numerous mitochondria, dictyosomes, scattered lipid droplets and plastids with different inclusions: protein, lipid droplets or starch grains; vacuoles with different sizes have membranous material, phenolic and lipophilic substances. The palisade cells show thick periclinal walls, reduced cytoplasm with voluminous lipid drops and developed vacuoles. The nectary parenchyma cells contain abundant plasmodesmata and cytoplasm with scattered lipid droplets, mitochondria, plastids with starch grains and endoplasmic reticulum. Mucilage idioblasts are common in the inner nectary parenchyma. Protoderm and ground meristem participate in the formation of EFN. Our data indicate that all nectary regions are involved in nectar production and secretion, constituting a functional unit. Longevity of the extrafloral nectaries is likely associated with the presence of mucilage idioblasts, which increases the capacity of the nectary parenchyma to store water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)). Colleters are secretory structures formed by a parenchymatic axis with vascular bundles, bound by a layer of secretory palisade-like epidermis. Some studies regarding the structure of colleters have focused on secretory cells structure, but not distinguished the secretory and senescent phases. Generally, in mucilage-secreting cells such as colleters, the endoplasmic reticulum and Golgi apparatus are involved in secretion production and transport. In these study, colleters structure of Bathysa gymnocarpa K. Schum. and B. stipulata (Vell.) C. Presl. (Rubiaceae) were determined in two phases: a secretory phase and a senescence one. Samples were collected and processed by usual light and electron microscopy techniques. Studied colleters are constituted by an epidermal palisade layer and a central axis formed by parenchymatic cells with rare vascular traces. During the secretory phase, epidermal cells presented a dense cytoplasm, small vacuoles, enhanced rough and smooth endoplasmic reticulum, and a Golgi apparatus close to large vesicles. During the senescence phase epidermal cells presented a disorganized membrane system. No intact organelles or vesicles were observed. The outer cell wall exhibited similar layers to that observed during the secretory phase. The senescent phase is easily defined by the morphology of the colleters, but not well defined at subcellular level. Our research suggests that programmed cell death starts on secretory phase. However, more evidences are needed to evaluate the phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human skinned muscle fibers were used to investigate the effects of bovine serum albumin (BSA) on the tension/pCa relationship and on the functional properties of the Ca2+-release channel of the sarcoplasmic reticulum (SR). In both fast- and slow-type fibers, identified by their tension response to pSr 5.0, BSA (0.7-15 µM) had no effect on the Ca2+ affinity of the contractile proteins and elicited no tension per se in Ca2+-loaded fibers. In contrast, BSA (>1.0 µM) potentiated the caffeine-induced tension in Ca2+-loaded fibers, this effect being more intense in slow-type fibers. Thus, BSA reduced the threshold caffeine concentration required for eliciting detectable tension, and increased the amplitude, the rate of rise and the area under the curve of caffeine-induced tension. BSA also potentiated the tension elicited in Ca2+-loaded fibers by low-Mgv solutions containing 1.0 mM free ATP. These results suggest that BSA modulates the response of the human skeletal muscle SR Ca2+-release channel to activators such as caffeine and ATP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrastructural phenotypic transitional features were noted between adult adipocytes and fibroblasts in the subcutaneous adipose tissue of the dorsal pad of normal adult Wistar rats of both sexes, weighing 180-260 g, after acute injury either by the implantation of small (1.8 x 1 x 0.4 cm) perforated plastic boxes or by local heat application. Soon after the inflicted damage, fat-containing cells presented variable shapes. Early after damage, some of these cells were round, adipocyte-like, with numerous and large cytoplasmic fat droplets. A few days later, fat-containing cells became elongated, with the fat droplets in their cytoplasm becoming smaller and less numerous. The cells also showed a prominent active rough endoplasmic reticulum and newly formed collagenous matrix accumulated in the interstices. Although current views consider adult adipocytes to be terminal cells, the present findings, in their time sequence, strongly suggest the transformation of adipocytes into fibroblasts after acute injury to adipose tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this communication we review the results obtained with the confocal laser scanning microscope to characterize the interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi and tachyzoites of Toxoplasma gondii with host cells. Early events of the interaction process were studied by the simultaneous localization of sites of protein phosphorylation, revealed by immunocytochemistry, and sites of actin assembly, revealed by the use of labeled phaloidin. The results obtained show that proteins localized in the interaction sites are phosphorylated. The process of formation of the parasitophorous vacuole was monitored by labeling the host cell surface with fluorescent probes for lipids (PKH26), proteins (DTAF) and sialic acid (FITC-thiosemicarbazide) before interaction with the parasites. Evidence was obtained indicating transfer of components of the host cell surface to the parasite surface in the beginning of the interaction process. We also analyzed the distribution of cytoskeletal structures (microtubules and microfilaments visualized with specific antibodies), mitochondria (visualized with rhodamine 123), the Golgi complex (visualized with C6-NBD-ceramide) and the endoplasmic reticulum (visualized with anti-reticulin antibodies and DIOC6) during the evolution of intracellular parasitism. The results obtained show that some, but not all, structures change their position during evolution of the intracellular parasitism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence has indicated that the sarcoplasmic reticulum (SR) might be involved in the generation of spontaneous electrical activity in atrial pacemaker cells. We report the effect of disabling the SR with ryanodine (0.1 µM) on the sinus node recovery time (SNRT) measured in isolated right atria from 4-6-month-old male Wistar rats. Electrogram and isometric force were recorded at 36.5oC. Two methods for sinus node resetting were used: a) pulse: a single stimulus pulse interpolated at coupling intervals of 50, 65 or 80% of the regular spontaneous cycle length (RCL), and b) train: a 2-min train of pulses at intervals of 50, 65 or 80% of RCL. Corrected SNRT (cSNRT) was calculated as the difference between SNRT (first spontaneous cycle length after stimulation interruption) and RCL. Ryanodine only slightly increased RCL (<10%), but decreased developed force by 90%. When the pulse method was used, cSNRT (~40 ms), which represents intranodal/atrial conduction time, was independent of the coupling interval and unaffected by ryanodine. However, cSNRT obtained by the train method was significantly higher for shorter intervals between pulses, indicating the occurrence of overdrive suppression. In this case, ryanodine prolonged cSNRT in a rate-dependent fashion, with a greater effect at shorter intervals. These results indicate that: a) a functional SR, albeit important for force development, does not seem to play a major role in atrial automaticity in the rat; b) disruption of cell Ca2+ homeostasis by inhibition of SR function does not appear to affect conduction; however, it enhances overdrive-induced depression of sinusal automaticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idarubicin is an anthracycline antibiotic extensively used in acute leukemia. In the present study we investigated whether vitamin E and catechin can reduce the toxic effects of idarubicin. Vitamin E (200 IU kg-1 week-1), catechin (200 mg kg-1 week-1), idarubicin (5 mg kg-1 week-1), idarubicin + vitamin E (200 IU kg-1 week-1), and idarubicin + catechin (200 mg kg-1 week-1) combinations were given to male Sprague-Dawley rats weighing 210 to 230 g (N = 6/group). Idarubicin-treated animals exhibited a decrease in body and heart weight, a decrease in myocardial contractility, and changes in ECG parameters (P<0.01). Catechin + idarubicin- and vitamin E + idarubicin-treated groups exhibited similar alterations, but changes were attenuated in comparison to those in cardiac muscle of idarubicin-treated rats (P<0.05). Superoxide dismutase and catalase activity was reduced in the idarubicin-treated group (P<0.05). Glutathione peroxidase levels were decreased in the idarubicin-treated group (P<0.05) and reached maximum concentrations in the catechin- and catechin + idarubicin-treated groups compared to control (P<0.01). Malondialdehyde activity was decreased in the catechin + idarubicin-treated groups compared to control and increased in the other groups, reaching maximum concentrations in the vitamin E-treated group (P<0.01). In electron microscopy studies, swelling of the mitochondria and dilatation of the sarcoplasmic reticulum of myocytes were observed in the idarubicin-treated groups. In groups that were given idarubicin + vitamin E and idarubicin + catechin, the only morphological change was a weak dilatation of the sarcoplasmic reticulum. We conclude that catechin and vitamin E significantly reduce idarubicin-induced cardiotoxicity in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nascent procollagen peptides and other secretory proteins are transported across the endoplasmic reticulum (ER) membrane through a protein-conducting channel called translocon. Sec61alpha, a multispanning membrane translocon protein, has been implicated as being essential for translocation of polypeptide chains into the cisterns of the ER. Sec61alpha forms a protein complex with collagen and Hsp47, an ER-resident heat shock protein that binds specifically to collagen. However, it is not known whether Sec61alpha is ubiquitously produced in collagen-producing F9 teratocarcinoma cells or under heat shock treatment. Furthermore, the production and utilization of Sec61alpha may depend on the stage of cell differentiation. Cultured F9 teratocarcinoma cells are capable of differentiation in response to low concentrations of retinoic acid. This differentiation results in loss of tumorigenicity. Mouse F9 cells were grown in culture medium at 37ºC and 43ºC (heat shock treatment) treated or not with retinoic acid, and labeled in certain instances with 35S-methionine. Membrane-bound polysomes of procollagen IV were then isolated. Immunoprecipitation and Western blot analysis were performed using polyclonal antibodies against collagen IV, Hsp47 and Sec61alpha. Under retinoic acid-untreated conditions, F9 cells produced undetectable amounts of Sec61alpha. Sec61alpha, Hsp47 and type IV collagen levels were increased after retinoic acid treatment. Heat shock treatment did not alter Sec61alpha levels, suggesting that Sec61alpha production is probably not affected by heat shock. These data indicate that the enhanced production of Sec61alpha in retinoic acid-induced F9 teratocarcinoma cells parallels the increased synthesis of Hsp47 and collagen type IV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs) of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER) and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ß-ATP, and ADP failed to do so in a 1- to 200-µm con- centration. The EC50 obtained for the compounds tested was 41.77 µM for UTP, 48.11 µM for GTP, 53.11 µM for UDP, and 30.78 µM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ca/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta) is the predominant isoform in the heart. During excitation-contraction coupling (ECC) CaMKII phosphorylates several Ca-handling proteins including ryanodine receptors (RyR), phospholamban, and L-type Ca channels. CaMKII expression and activity have been shown to correlate positively with impaired ejection fraction in the myocardium of patients with heart failure and CaMKII has been proposed to be a possible compensatory mechanism to keep hearts from complete failure. However, in addition to these acute effects on ECC, CaMKII was shown to be involved in hypertrophic signaling, termed excitation-transcription coupling (ETC). Thus, animal models have shown that overexpression of nuclear isoform CaMKIIdeltaB can induce myocyte hypertrophy. Recent study from our laboratory has suggested that transgenic overexpression of the cytosolic isoform CaMKIIdeltaC in mice causes severe heart failure with altered intracellular Ca handling and protein expression leading to reduced sarcoplasmic reticulum (SR) Ca content. Interestingly, the frequency of diastolic spontaneous SR Ca release events (or opening of RyR) was greatly enhanced, demonstrating increased diastolic SR Ca leak. This was attributed to increased CaMKII-dependent RyR phosphorylation, resulting in increased and prolonged openings of RyR since Ca spark frequency could be reduced back to normal levels by CaMKII inhibition. This review focuses on acute and chronic effects of CaMKII in ECC and ETC. In summary, CaMKII overexpression can lead to heart failure and CaMKII-dependent RyR hyperphosphorylation seems to be a novel and important mechanism in ECC due to SR Ca leak which may be important in the pathogenesis of heart failure.