904 resultados para Renal ischemia and reperfusion injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) in ageing is a burden on health systems worldwide. Rat models of age-related CKD linked with obesity and hypertension were used to investigate alterations in oxidant handling and energy metabolism to identify gene targets or markers for age-related CKD. Young adult (3 months) and old (21–24 months) spontaneously-hypertensive (SHR), normotensive Wistar-Kyoto (WKY) and Wistar rats (normotensive, obese in ageing) were compared for renal functional and physiological parameters, renal fibrosis and inflammation, oxidative stress (hemeoxygenase-1/HO-1), apoptosis and cell injury (including Bax:Bcl-2), phosphorylated and non-phosphorylated forms of oxidant and energy sensing proteins (p66Shc, AMPK), signal transduction proteins (ERK1/2, PKB), and transcription factors (NF-κB, FoxO1). All old rats were normoglycemic. Renal fibrosis, tubular epithelial apoptosis, interstitial macrophages and myofibroblasts (all p < 0.05), p66Shc/phospho-p66 (p < 0.05), Bax/Bcl-2 ratio (p < 0.05) and NF-κB expression (p < 0.01) were highest in old obese Wistars. Expression of phospho-FoxO/FoxO was elevated in old Wistars (p < 0.001) and WKYs (p < 0.01). SHRs had high levels in young and old rats. Expression of PKB, phospho-PKB, ERK1/2 and phospho-ERK1/2 were significantly elevated in all aged animals. These results suggest that obesity and hypertension have differing oxidant handling and signalling pathways that act in the pathogenesis of age-related CKD

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The incidence of clinically apparent stroke in transcatheter aortic valve implantation (TAVI) exceeds that of any other procedure performed by interventional cardiologists and, in the index admission, occurs more than twice as frequently with TAVI than with surgical aortic valve replacement (SAVR). However, this represents only a small component of the vast burden of neurological injury that occurs during TAVI, with recent evidence suggesting that many strokes are clinically silent or only subtly apparent. Additionally, insult may manifest as slight neurocognitive dysfunction rather than overt neurological deficits. Characterisation of the incidence and underlying aetiology of these neurological events may lead to identification of currently unrecognised neuroprotective strategies. Methods The Silent and Apparent Neurological Injury in TAVI (SANITY) Study is a prospective, multicentre, observational study comparing the incidence of neurological injury after TAVI versus SAVR. It introduces an intensive, standardised, formal neurologic and neurocognitive disease assessment for all aortic valve recipients, regardless of intervention (SAVR, TAVI), valve-type (bioprosthetic, Edwards SAPIEN-XT) or access route (sternotomy, transfemoral, transapical or transaortic). Comprehensive monitoring of neurological insult will also be recorded to more fully define and compare the neurological burden of the procedures and identify targets for harm minimisation strategies. Discussion The SANITY study undertakes the most rigorous assessment of neurological injury reported in the literature to date. It attempts to accurately characterise the insult and sustained injury associated with both TAVI and SAVR in an attempt to advance understanding of this complication and associations thus allowing for improved patient selection and procedural modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Social support is an important moderator of poor well-being outcomes for nurses engaged in emotional labour with patients; however, the most effective support for renal nurses is not well understood compared with other specialties. Objectives: To identify patterns and themes in how renal nurses and two other specialties engage with patients’ emotional expressions, express their own emotion and access and provide support for emotional expenditure. Method: Renal, emergency and palliative care nurses from Perth, Western Australia, were interviewed. Results: Renal nurses engage in significant amounts of emotional labour with patients, and identify co-workers as the most important source of support due to their availability and a sense of shared experience. However, comparative analysis showed that renal nurses do not recognise their emotional expenditure as readily and have less certainty of co-worker support. Conclusions: Because their high levels of emotional engagement with patients are mostly positive, renal nurses are less prepared than other nurses to manage difficult emotional situations. As co-worker support is highly valued, organisations should train renal nurses specifically to support one another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

- Objective To explore the potential for using a basic text search of routine emergency department data to identify product-related injury in infants and to compare the patterns from routine ED data and specialised injury surveillance data. - Methods Data was sourced from the Emergency Department Information System (EDIS) and the Queensland Injury Surveillance Unit (QISU) for all injured infants between 2009 and 2011. A basic text search was developed to identify the top five infant products in QISU. Sensitivity, specificity, and positive predictive value were calculated and a refined search was used with EDIS. Results were manually reviewed to assess validity. Descriptive analysis was conducted to examine patterns between datasets. - Results The basic text search for all products showed high sensitivity and specificity, and most searches showed high positive predictive value. EDIS patterns were similar to QISU patterns with strikingly similar month-of-age injury peaks, admission proportions and types of injuries. - Conclusions This study demonstrated a capacity to identify a sample of valid cases of product-related injuries for specified products using simple text searching of routine ED data. - Implications As the capacity for large datasets grows and the capability to reliably mine text improves, opportunities for expanded sources of injury surveillance data increase. This will ultimately assist stakeholders such as consumer product safety regulators and child safety advocates to appropriately target prevention initiatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiphenotype genome-wide association studies (GWAS) may reveal pleiotropic genes, which would remain undetected using single phenotype analyses. Analysis of large pedigrees offers the added advantage of more accurately assessing trait heritability, which can help prioritise genetically influenced phenotypes for GWAS analysis. In this study we performed a principal component analysis (PCA), heritability (h2) estimation and pedigree-based GWAS of 37 cardiovascular disease -related phenotypes in 330 related individuals forming a large pedigree from the Norfolk Island genetic isolate. PCA revealed 13 components explaining >75% of the total variance. Nine components yielded statistically significant h2 values ranging from 0.22 to 0.54 (P<0.05). The most heritable component was loaded with 7 phenotypic measures reflecting metabolic and renal dysfunction. A GWAS of this composite phenotype revealed statistically significant associations for 3 adjacent SNPs on chromosome 1p22.2 (P<1x10-8). These SNPs form a 42kb haplotype block and explain 11% of the genetic variance for this renal function phenotype. Replication analysis of the tagging SNP (rs1396315) in an independent US cohort supports the association (P = 0.000011). Blood transcript analysis showed 35 genes were associated with rs1396315 (P<0.05). Gene set enrichment analysis of these genes revealed the most enriched pathway was purine metabolism (P = 0.0015). Overall, our findings provide convincing evidence for a major pleiotropic effect locus on chromosome 1p22.2 influencing risk of renal dysfunction via purine metabolism pathways in the Norfolk Island population. Further studies are now warranted to interrogate the functional relevance of this locus in terms of renal pathology and cardiovascular disease risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombin is a multifunctional protease, which has a central role in the development and progression of coronary atherosclerotic lesions and it is a possible mediator of myocardial ischemia-reperfusion injury. Its generation and procoagulant activity are greatly upregulated during cardiopulmonary bypass (CPB). On the other hand, activated protein C, a physiologic anticoagulant that is activated by thrombomodulin-bound thrombin, has been beneficial in various models of ischemia-reperfusion. Therefore, our aim in this study was to test whether thrombin generation or protein C activation during coronary artery bypass grafting (CABG) associate with postoperative myocardial damage or hemodynamic changes. To further investigate the regulation of thrombin during CABG, we tested whether preoperative thrombophilic factors associate with increased CPB-related generation of thrombin or its procoagulant activity. We also measured the anticoagulant effects of heparin during CPB with a novel coagulation test, prothrombinase-induced clotting time (PiCT), and compared the performance of this test with the present standard of laboratory-based anticoagulation monitoring. One hundred patients undergoing elective on-pump CABG were studied prospectively. A progressive increase in markers of thrombin generation (F1+2), fibrinolysis (D-dimer), and fibrin formation (soluble fibrin monomer complexes) was observed during CPB, which was further distinctly propagated by reperfusion after myocardial ischemia, and continued to peak after the neutralization of heparin with protamine. Thrombin generation during reperfusion after CABG associated with postoperative myocardial damage and increased pulmonary vascular resistance. Activated protein C levels increased only slightly during CPB before the release of the aortic clamp, but reperfusion and more significantly heparin neutralization caused a massive increase in activated protein C levels. Protein C activation was clearly delayed in relation to both thrombin generation and fibrin formation. Even though activated protein C associated dynamically with postoperative hemodynamic performance, it did not associate with postoperative myocardial damage. Preoperative thrombophilic variables did not associate with perioperative thrombin generation or its procoagulant activity. Therefore, our results do not favor routine thrombophilia screening before CABG. There was poor agreement between PiCT and other measurements of heparin effects in the setting of CPB. However, lower heparin levels during CPB associated with inferior thrombin control and high heparin levels during CPB associated with fewer perioperative transfusions of blood products. Overall, our results suggest that hypercoagulation after CABG, especially during reperfusion, might be clinically important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drugs and surgical techniques may have harmful renal effects during the perioperative period. Traditional biomarkers are often insensitive to minor renal changes, but novel biomarkers may more accurately detect disturbances in glomerular and tubular function and integrity. The purpose of this study was first, to evaluate the renal effects of ketorolac and clonidine during inhalation anesthesia with sevoflurane and isoflurane, and secondly, to evaluate the effect of tobacco smoking on the production of inorganic fluoride (F-) following enflurane and sevoflurane anesthesia as well as to determine the effect of F- on renal function and cellular integrity in surgical patients. A total of 143 patients undergoing either conventional (n = 75) or endoscopic (n = 68) inpatient surgery were enrolled in four studies. The ketorolac and clonidine studies were prospective, randomized, placebo controlled and double-blinded, while the cigarette smoking studies were prospective cohort studies with two parallel groups. As a sign of proximal tubular deterioration, a similar transient increase in urine N-acetyl-beta-D-glucosaminidase/creatinine (U-NAG/crea) was noted in both the ketorolac group and in the controls (baseline vs. at two hours of anesthesia, p = 0.015) with a 3.3 minimum alveolar concentration hour sevoflurane anesthesia. Uncorrelated U-NAG increased above the maximum concentration measured from healthy volunteers (6.1 units/l) in 5/15 patients with ketorolac and in none of the controls (p = 0.042). As a sign of proximal tubular deterioration, U-glutathione transferase-alpha/crea (U-GST-alpha/crea) increased in both groups at two hours after anesthesia but a more significant increase was noted in the patients with ketorolac. U-GST-alpha/crea increased above the maximum ratio measured from healthy volunteers in 7/15 patients with ketorolac and in 3/15 controls. Clonidine diminished the activation of the renin-angiotensin aldosterone system during pneumoperitoneum; urine output was better preserved in the patients treated with clonidine (1/15 patients developed oliguria) than in the controls (8/15 developed oliguria (p=0.005)). Most patients with pneumoperitoneum and isoflurane anesthesia developed a transient proximal tubular deterioration, as U-NAG increased above 6.1 units/L in 11/15 patients with clonidine and in 7/15 controls. In the patients receiving clonidine treatment, the median of U-NAG/crea was higher than in the controls at 60 minutes of pneumoperitoneum (p = 0.01), suggesting that clonidine seems to worsen proximal tubular deterioration. Smoking induced the metabolism of enflurane, but the renal function remained intact in both the smokers and the non-smokers with enflurane anesthesia. On the contrary, smoking did not induce sevoflurane metabolism, but glomerular function decreased in 4/25 non-smokers and in 7/25 smokers with sevoflurane anesthesia. All five patients with S-F- ≥ 40 micromol/L, but only 6/45 with S-F- less than 40 micromol/L (p = 0.001), developed a S-tumor associated trypsin inhibitor concentration above 3 nmol/L as a sign of glomerular dysfunction. As a sign of proximal tubulus deterioration, U-beta 2-microglobulin increased in 2/5 patients with S-F- over 40 micromol/L compared to 2/45 patients with the highest S-F- less than 40 micromol/L (p = 0.005). To conclude, sevoflurane anesthesia may cause a transient proximal tubular deterioration which may be worsened by a co-administration of ketorolac. Clonidine premedication prevents the activation of the renin-angiotensin aldosterone system and preserves normal urine output, but may be harmful for proximal tubules during pneumoperitoneum. Smoking induces the metabolism of enflurane but not that of sevoflurane. Serum F- of 40 micromol/L or higher may induce glomerular dysfunction and proximal tubulus deterioration in patients with sevoflurane anesthesia. The novel renal biomarkers warrant further studies in order to establish reference values for surgical patients having inhalation anesthesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. Methods: In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. Results: GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. Conclusions: This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of tissue specific precursor cells is an emerging concept in organ formation and tissue homeostasis. Several progenitors are described in the kidneys. However, their identity as a true stem cell remains elusive. Here, we identify a neonatal kidney-derived c-kit(+) cell population that fulfills all of the criteria as a stem cell. These cells were found in the thick ascending limb of Henle's loop and exhibited clonogenicity, self-renewal, and multipotentiality with differentiation capacity into mesoderm and ectoderm progeny. Additionally, c-kit(+) cells formed spheres in nonadherent conditions when plated at clonal density and expressed markers of stem cells, progenitors, and differentiated cells. Ex vivo expanded c-kit(+) cells integrated into several compartments of the kidney, including tubules, vessels, and glomeruli, and contributed to functional and morphological improvement of the kidney following acute ischemia-reperfusion injury in rats. Together, these findings document a novel neonatal rat kidney c-kit(+) stem cell population that can be isolated, expanded, cloned, differentiated, and used for kidney repair following acute kidney injury. These cells have important biological and therapeutic implications. STEM Cells 2013;31:1644-1656

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: In kidney transplant recipients (KTR), antibody (Ab) synthesis is hampered by AZA and CsA. We here report in a prospective cohort study, the effects of mycophenolate mofetil (MMF) associated to a calcineurin inhibitor on plasma levels of anti-tetanus anatoxin Ab (TAnAb) and anti-pneumococcal Ab (PnPsAb). Methods: Serum titers of the TAnAb and the PnPsAb against serotypes 14, 19F and 23F were measured in 94 KTR on Day 0 (T0) and 1 year (T12) after renal transplantation and in 49 healthy controls. Results: 1) At T0, TAnAb were detected in only 71% of patients vs. 98% of controls (p < 0.0001) and the titers were significantly lower in KTR (1.46 UI/ml vs. 2.74 in controls, p = 0.01); they further decreased between T0 and T12 (1.46 UI/ml to 0.31, p < 0.0001). The calculated half-life (t1/2) of TAnAb was 7.7 months, as compared to more than 10 years in a normal population. 2) In KTR, PnPsAb titers decreased significantly between T0 and T12 (p < 0.005); the t1/2 of the different PnPsAb ranged from 9.2 to 11.9 months. Conclusions: In KTR treated by MMF and CNI, the TAnAbs and PnPsAbs titers decrease significantly and profoundly during the first year. Immunization pre-transplantation should be encouraged to maintain adequate post-transplant Abs levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify patients at increased risk of cardiovascular (CV) outcomes, apparent treatment-resistant hypertension (aTRH) is defined as having a blood pressure above goal despite the use of 3 or more antihypertensive therapies of different classes at maximally tolerated doses, ideally including a diuretic. Recent epidemiologic studies in selected populations estimated the prevalence of aTRH as 10% to 15% among patients with hypertension and that aTRH is associated with elevated risk of CV and renal outcomes. Additionally, aTRH and CKD are associated. Although the pathogenesis of aTRH is multifactorial, the kidney is believed to play a significant role. Increased volume expansion, aldosterone concentration, mineralocorticoid receptor activity, arterial stiffness, and sympathetic nervous system activity are central to the pathogenesis of aTRH and are targets of therapies. Although diuretics form the basis of therapy in aTRH, pathophysiologic and clinical data suggest an important role for aldosterone antagonism. Interventional techniques, such as renal denervation and carotid baroreceptor activation, modulate the sympathetic nervous system and are currently in phase III trials for the treatment of aTRH. These technologies are as yet unproven and have not been investigated in relationship to CV outcomes or in patients with CKD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased plasma homocysteine is an independent risk factor for cardiovascular disease. We have investigated homocysteine and B-group vitamin levels in renal transplant patients. Fasting blood was collected from 55 renal transplant recipients with good renal function and 32 age/sex matched control subjects. Total homocysteine was increased in transplant recipients in comparison to controls (10.9+/-1.5 vs. 6.7+/-1.3 micromol/l, P < 0.001). There was no difference in homocysteine between patients receiving cyclosporin (n = 39, homocysteine 11.0+/-1.5 micromol/l) and patients receiving prednisolone + azathioprine (n = 16, 10.8+/-1.6 micromol/l, mean+/-S.D.), although there was a significant correlation between homocysteine and serum cyclosporin concentration in the sub-group of patients receiving that immunosuppressive regimen (r = 0.42, P < 0.05). Levels of B-group vitamins were similar in patients and controls. Plasma homocysteine is increased in renal transplant recipients even in the presence of minor degrees of renal impairment and normal levels of B-group vitamins.