932 resultados para Remission, Spontaneous
Resumo:
It is claimed often in the H. pylori literature that spontaneous clearance (infection loss without attempts to treat) is uncommon, though little evidence supports this claim. Emerging evidence suggests that spontaneous clearance may be frequent in young children; however, factors that determine persistence of untreated H. pylori infection in childhood are not well understood. The author hypothesized that antibiotics taken for common infections cause spontaneous clearance of H. pylori infection in children. The Pasitos Cohort Study (19982005) investigated predictors of acquisition and persistence of H. pylori infection in children from El Paso, Texas, and Juarez, Mexico, enrolled prenatally at maternal-child clinics. Children were screened for infection at target intervals of 6 months from 6-84 months of age by the 13C-urea breath test corrected for body-size-dependent variation in CO2 production. This dissertation aimed to estimate the risk of spontaneous clearance at the next test following an initial detected H. pylori infection (first detected clearance), estimate the effect of antibiotic exposure on the risk of first detected clearance (risk difference), and estimate the effect of antibiotic exposure on the rate of first detected infection (rate ratio). Data on infection status and medication history were available for 608 children followed for a mean of 3.5 years. Among 265 subjects with a first detected infection, 218 had a subsequent test, and among them, the risk of first detected clearance was 68% (95% CI: 61-74%). Children who took antibiotics during the interval between first detected infection and next test had an increased probability (risk difference of 10 percentage points) of a first detected clearance. However, there was also a similar effect of average antibiotic use >0 courses across all intervals preceding the next test. Average antibiotic exposure across all intervals preceding the first detected infection appeared to have a much stronger protective effect than interval/specific exposure when estimating incidence rate ratios (0.45 vs. 1.0). Incidental antibiotic exposure appears to influence the acquisition and duration of childhood H. pylori infection, however, given that many exposed children acquired the infection and many unexposed children cleared the infection, antibiotic exposure does not explain all infection events. ^
Resumo:
Over 80% of p53 mutations found in human cancers are p53 missense mutations. Recent studies have shown that p53 restoration leads to tumor regression in mice with p53 deletions, but the therapeutic efficacy of p53 restoration in tumors containing p53 missense mutations has not been evaluated. Since p53 mutant such as p53R172H has gain-of-function activities and dominant-negative effect that repress wild type p53, the activity of restored wild-type p53 might be compromised by the mutant p53 in tumors. We hypothesized that p53 restoration in tumors with the p53R172H mutation may be less therapeutically effective as p53 restoration in tumors null for p53. I tested this hypothesis by comparison of the therapeutic outcomes of p53 restoration in mice with spontaneous tumors that either lacked p53 or contained the p53R172H mutation. While p53 restoration causes tumor regression in mice lacking p53, the same p53 restoration halts tumor progression in mice with the p53R172H mutation. This phenotypic difference suggests a dominant-negative activity of the mutant p53. Moreover, I showed that the mutant p53 only inhibits part of the activity of the restored wild-type p53 and that the remaining wild-type activity still causes a delay in tumor progression. We conclude that p53 restoration has therapeutic potential in p53R172H tumors via suppression of tumor progression. This knowledge is of critical importance for p53 targeted cancer therapy because many patients with cancers harbor p53 missense mutations rather p53-null mutations. Since p53R172H mutation represents one of the most frequent and potent p53 missense mutations observed in human cancers, the current findings implicates that p53 restoration may be therapeutically important not only in human cancers characterized by loss of p53 alleles but also in those in which p53 missense mutations play an important pathogenetic role. ^
Resumo:
A majority of persons who have sustained spinal cord injury (SCI) develop chronic pain. While most investigators have assumed that the critical mechanisms underlying neuropathic pain after SCI are restricted to the central nervous system (CNS), recent studies showed that contusive SCI results in a large increase in spontaneous activity in primary nociceptors, which is correlated significantly with mechanical allodynia and thermal hyperalgesia. Upregulation of ion channel transient receptor vanilloid 1 (TRPV1) has been observed in the dorsal horn of the spinal cord after SCI, and reduction of SCI-induced hyperalgesia by a TRPV1 antagonist has been claimed. However, the possibility that SCI enhances TRPV1 expression and function in nociceptors has not been tested. I produced contusive SCI at thoracic level T10 in adult, male rats and harvested lumbar (L4/L5) dorsal root ganglia (DRG) from sham-treated and SCI rats 3 days and 1 month after injury, as well as from age-matched naive control rats. Whole-cell patch clamp recordings were made from small (soma diameter <30 >μm) DRG neurons 18 hours after dissociation. Capsaicin-induced currents were significantly increased 1 month, but not 3 days, after SCI compared to neurons from control animals. In addition, Ca2+ transients imaged during capsaicin application were significantly greater 1 month after SCI. Western blot experiments indicated that expression of TRPV1 protein in DRG is also increased 1 month after SCI. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hindlimb withdrawal responses to heat and mechanical stimuli. Similar reversal of behavioral hypersensitivity was induced by intrathecal delivery of oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of spontaneous activity in dissociated nociceptors after SCI. Limited activation of TRPV1 was found to induce prolonged repetitive firing without accommodation or desensitization, and this effect was enhanced by SCI. These data suggest that SCI enhances TRPV1 expression and function in primary nociceptors, increasing the excitability and spontaneous activity of these neurons, thus contributing to chronic pain after SCI.
Resumo:
Isotopic-geochemical study revealed presence of mantle He (3He/4He up to 223x10**-8) in gases from mud volcanoes of Eastern Georgia. This fact confirms that the Middle Kura basin fill encloses an intrusive body previously distinguished from geophysical data. Wide variations of carbon isotopic composition d13C in CH4 and CO2 and chemical composition of gas and water at temporally constant 3He/4He ratio indicate their relation with crustal processes. Unusual direct correlations of 3He/4He ratio with concentrations of He and CH4 and 40Ar/36Ar ratio can be explained by generation of gas in the Cenozoic sequence of the Middle Kura basin.
Resumo:
The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations
Resumo:
Sign.: []2
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz–Mancini–Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.
Resumo:
The general purpose of this study was the determination of the safety conditions to avoid the presence of explosive atmospheres in the wastewater industry. Eight Spanish plants located in Madrid, Barcelona and Málaga were considered and several sludge samples were taken in different seasons. The base for the assessment of the spontaneous ignition behaviour of dust accumulations is the experimental determination of the self-ignition temperature under isothermal conditions. Self-ignition temperatures at four volumes were obtained for one sample of sewage sludge, allowing their extrapolation to large storage facilities. A simple test method, based also on an isothermal study of samples, is the UN classification of substances liable to spontaneous combustion. Two different samples were so tested, obtaining unlike results if transported in packages of different volumes. By means of thermogravimetric techniques it is possible to analyse the thermal susceptibility of dried sewage sludge. Apparent activation energy can be obtained from the rate of weight loss. It is also applied to the study of self-ignition susceptibility by modifying test conditions when oxygen stream is introduced. As a consequence of this oxidant contribution, sample behaviour can be very different during testing and a step drop or sudden loss of weight is observed at a characteristic temperature for every substance, associated to a rapid combustion. Plotting both the activation energy and the characteristic temperature, a map of self-ignition risk was obtained for 10 samples, showing different risk levels for samples taken in different locations and at different seasons. A prediction of the self-ignition risk level can be also determined.
Resumo:
The neurophysiological changes associated with Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG). A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs) were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p < 0.05) in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68 ± 0.71 Hz for controls and 9.05 ± 0.90 Hz for MCIs and the average normalized amplitude was (2.57 ± 0.59)·10−2 for controls and (2.70 ± 0.49)·10−2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.
Resumo:
It has been suggested that different pathways through the brain are followed depending on the type of information that is being processed. Although it is now known that there is a continuous exchange of information through both hemispheres, language is considered to be processed by the left hemisphere, where Broca?s and Wernicke?s areas are located. On the other hand, music is thought to be processed mainly by the right hemisphere. According to Sininger Y.S. & Cone- Wesson, B. (2004), there is a similar but contralateral specialization of the human ears; due to the fact that auditory pathways cross-over at the brainstem. A previous study showed an effect of musical imagery on spontaneous otoacoustic emissions (SOAEs) (Perez-Acosta and Ramos-Amezquita, 2006), providing evidence of an efferent influence from the auditory cortex on the basilar membrane. Based on these results, the present work is a comparative study between left and right ears of a population of eight musicians that presented SOAEs. A familiar musical tune was chosen, and the subjects were trained in the task of evoking it after having heard it. Samples of ear-canal signals were obtained and processed in order to extract frequency and amplitude data on the SOAEs. This procedure was carried out before, during and after the musical image creation task. Results were then analyzed to compare the difference between SOAE responses of left and right ears. A clear asymmetrical SOAEs response to musical imagery tasks between left and right ears was obtained. Significant changes of SOAE amplitude related to musical imagery tasks were only observed on the right ear of the subjects. These results may suggest a predominant left hemisphere activity related to a melodic image creation task.
Resumo:
Current solutions to the interoperability problem in Home Automation systems are based on a priori agreements where protocols are standardized and later integrated through specific gateways. In this regards, spontaneous interoperability, or the ability to integrate new devices into the system with minimum planning in advance, is still considered a major challenge that requires new models of connectivity. In this paper we present an ontology-driven communication architecture whose main contribution is that it facilitates spontaneous interoperability at system model level by means of semantic integration. The architecture has been validated through a prototype and the main challenges for achieving complete spontaneous interoperability are also evaluated.
Resumo:
Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.
Resumo:
The specific-locus test (SLT) detects new mutants among mice heterozygous for seven recessive visible markers. Spontaneous mutations can be manifested not only as singleton whole-body mutants in controls (for which we report new data), but as mosaics—either visible (manifesting mottled coat color) in the scored generation (G2) or masked, among the wild-type parental generation (G1). Masked G1 mosaics reveal themselves by producing clusters of whole-body mutants in G2. We provide evidence that most, if not all, mosaics detected in the SLT (both radiation and control progenies) result from a single-strand spontaneous mutation subsequent to the last premeiotic mitosis and before the first postmeiotic one of a parental genome—the “perigametic interval.” Such events in the genomes of the G1 and G0 result, respectively, in visible and masked 50:50 mosaics. Per cell cycle, the spontaneous mutation rate in the perigametic interval is much higher than that in pregamete mitotic divisions. A clearly different locus spectrum further supports the hypothesis of different origin, and casts further doubt on the validity of the doubling-dose risk-estimation method. Because mosaics cannot have arisen in mitotic germ cells, and are not induced by radiation exposure in the perigametic interval, they should not be included in calculations of radiation-induced germ-line mutation rates. For per-generation calculations, inclusion of mosaics yields a spontaneous frequency 1.7 times that calculated from singletons alone for mutations contributed by males; including both sexes, the multiple is 2.2.
Resumo:
The molecular basis for developing symptomatic epilepsy (epileptogenesis) remains ill defined. We show here in a well characterized hippocampal culture model of epilepsy that the induction of epileptogenesis is Ca2+-dependent. The concentration of intracellular free Ca2+ ([Ca2+]i) was monitored during the induction of epileptogenesis by prolonged electrographic seizure activity induced through low-Mg2+ treatment by confocal laser-scanning fluorescent microscopy to directly correlate changes in [Ca2+]i with alterations in membrane excitability measured by intracellular recording using whole-cell current–clamp techniques. The induction of long-lasting spontaneous recurrent epileptiform discharges, but not the Mg2+-induced spike discharges, was prevented in low-Ca2+ solutions and was dependent on activation of the N-methyl-d-aspartate (NMDA) receptor. The results provide direct evidence that prolonged activation of the NMDA–Ca2+ transduction pathway causes a long-lasting plasticity change in hippocampal neurons causing increased excitability leading to the occurrence of spontaneous, recurrent epileptiform discharges.