929 resultados para Remediation time estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isotopic composition of surface seawater is widely used to infer past changes in sea surface salinity using paired foraminiferal Mg/Ca and d18O from marine sediments. At low latitudes, paleosalinity reconstructions using this method have largely been used to document changes in the hydrological cycle. This method usually assumes that the modern seawater d18O (d18Osw)/salinity relationship remained constant through time. Modelling studies have shown that such assumptions may not be valid because large-scale atmospheric circulation patterns linked to global climate changes can alter the seawater d18Osw/salinity relationship locally. Such processes have not been evidenced by paleo-data so far because there is presently no way to reconstruct past changes in the seawater d18Osw/salinity relationship. We have addressed this issue by applying a multi-proxy salinity reconstruction from a marine sediment core collected in the Gulf of Guinea. We measured hydrogen isotopes in C37:2 alkenones (dDa) to estimate changes in seawater dD. We find a smooth, long-term increase of ~10 per mil in dDa between 10 and 3 kyr BP, followed by a rapid decrease of ~10 per mil in dDa between 3 kyr BP and core top to values slightly lighter than during the early Holocene. Those features are inconsistent with published salinity estimations based on d18Osw and foraminiferal Ba/Ca, as well as nearby continental rainfall history derived from pollen analysis. We combined dDa and d18Osw values to reconstruct a Holocene record of salinity and compared it to a Ba/Ca-derived salinity record from the same sedimentary sequence. This combined method provides salinity trends that are in better agreement with both the Ba/Ca-derived salinity and the regional precipitation changes as inferred from pollen records. Our results illustrate that changes in atmospheric circulation can trigger changes in precipitation isotopes in a counter-intuitive manner that ultimately impacts surface salinity estimates based on seawater isotopic values. Our data suggest that the trends in Holocene rainfall isotopic values at low latitudes may not uniquely result from changes in local precipitation associated with the amount effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hudson Strait (HS) Heinrich Events, ice-rafting events in the North Atlantic originating from the Laurentide ice sheet (LIS), are among the most dramatic examples of millennial-scale climate variability and have a large influence on global climate. However, it is debated as to whether the occurrence of HS Heinrich Events in the (eastern) North Atlantic in the geological record depends on greater ice discharge, or simply from the longer survival of icebergs in cold waters. Using sediments from Integrated Ocean Drilling Program (IODP) Site U1313 in the North Atlantic spanning the period between 960 and 320 ka, we show that sea surface temperatures (SSTs) did not control the first occurrence of HS Heinrich(-like) Events in the sedimentary record. Using mineralogy and organic geochemistry to determine the characteristics of ice-rafting debris (IRD), we detect the first HS Heinrich(-like) Event in our record around 643 ka (Marine Isotope Stage (MIS) 16), which is similar as previously reported for Site U1308. However, the accompanying high-resolution alkenone-based SST record demonstrates that the first HS Heinrich(-like) Event did not coincide with low SSTs. Thus, the HS Heinrich(-like) Events do indicate enhanced ice discharge from the LIS at the end of the Mid-Pleistocene Transition, not simply the survivability of icebergs due to cold conditions in the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The newly introduced temperature proxy, the tetraether index of archaeal lipids with 86 carbon atoms (TEX86), is based on the number of cyclopentane moieties in the glycerol dialkyl glycerol tetraether (GDGT) lipids of marine Crenarchaeota. The composition of sedimentary GDGTs used for TEX86 paleothermometry is thought to reflect sea surface temperature (SST). However, marine Crenarchaeota occur ubiquitously in the world oceans over the entire depth range and not just in surface waters. We analyzed the GDGT distribution in settling particulate organic matter collected in sediment traps from the northeastern Pacific Ocean and the Arabian Sea to investigate the seasonal and spatial distribution of the fluxes of crenarchaeotal GDGTs and the origin of the TEX86 signal transported to the sediment. In both settings the TEX86 measured at all trap deployment depths reflects SST. In the Arabian Sea, analysis of an annual time series showed that the SST estimate based on TEX86 in the shallowest trap at 500 m followed the in situ SST with a 1 to 3 week time delay, likely caused by the relatively low settling speed of sinking particles. This revealed that the GDGT signal that reaches deeper water is derived from the upper water column rather than in situ production of GDGTs. The GDGT temperature signal in deeper traps at 1500 m and 3000 m did not show a seasonal cyclicity observed in the 500 m trap but rather reflected the annual mean SST. This is probably due to a homogenization of the TEX86 SST signal carried by particles as they ultimately reach the interior of the ocean. Our data confirm the use of TEX86 as a temperature proxy of surface ocean waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.