896 resultados para Recombinant Protein
Resumo:
Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin < HAP < HAP-Pol. Furthermore, hybrid molecular dynamics and steered molecular dynamics simulations validated that BMP-2 tightly anchored on the HAP-Pol surface with a relative loosened conformation, but the HAP-Sin surface induced a compact conformation of BMP-2. In conclusion, the nanostructured HAPs can modulate the way of adsorption of rhBMP-2, and thus the recognition of BMPR-IA and the bioactivity of rhBMP-2. These findings can provide insightful suggestions for the future design and fabrication of rhBMP-2-based scaffolds/implants.
Resumo:
Immunization of proven fertile adult male monkeys (n = 3) with a recombinant FSH receptor protein preparation (oFSHR-P) (representing amino acids 1-134 of the extracellular domain of the receptor Mr similar to 15KDa) resulted in production of receptor blocking antibodies. The ability of the antibody to bind a particulate FSH receptor preparation and receptors in intact granulosa cells was markedly (by 30-80%) inhibited by FSH. Serum T levels and LH receptor function following immunization remained unchanged. The immunized monkeys showed a 50% reduction (p<0.001) in transformation of spermatogonia(2C) to primary spermatocytes (4C) as determined by flow cytometry and the 4C:2C ratio showed a correlative change (R 0.81, p<0.0007) with reduction in fertility index (sperm counts X motility score). Breeding studies indicated that monkeys became infertile between 242-368 days of immunization when the fertility index was in the range of 123+/-76 to 354+/-42 (compared to a value of 1602+/-384 on day 0). As the effects observed ate near identical to that seen following immunization with FSH it is suggestive that oFSHR-P can substitute for FSH in the development of a contraceptive vaccine.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.
Resumo:
Live recombinant Saccharomyces cerevisiae yeast expressing the envelope antigen of Japanese encephalitis virus (JEV) on the outer mannoprotein layer of the cell wall were examined for their ability to induce antigen-specific antibody responses in mice. When used as a modelantigen, parenteral immunization of mice with surface-expressing GFP yeast induced a strong anti-GFP antibody response in the absence of adjuvants. This antigen delivery approach was then used for a more stringent system, such as the envelope protein of JEV, which is a neurotropic virus requiring neutralizing antibodies for protection.Although 70% of cells were detected to express the total envelope protein on the surface by antibodies raised to the bacterially expressed protein, polyclonal anti-JEV antibodies failed to react with them. In marked contrast, yeast expressing the envelope fragments 238-398, 373-399 and 373-500 in front of a Gly-Ser linker were detected by anti-JEV antibodies as well as a monoclonal antibody but not by antibodies raised to the bacterially expressed protein. Immunization of mice with these surface-expressing recombinants resulted in a strong antibody response. However, the antibodies failed to neutralize the virus, although the fragments were selected based on neutralizing determinants.
Resumo:
Neurotrophic factors (NTFs) are secreted proteins which promote the survival of neurons, formation and maintenance of neuronal contacts and regulate synaptic plasticity. NTFs are also potential drug candidates for the treatment of neurodegenerative diseases. Parkinson’s disease (PD) is mainly caused by the degeneration of midbrain dopaminergic neurons. Current therapies for PD do not stop the neurodegeneration or repair the affected neurons. Thus, search of novel neurotrophic factors for midbrain dopaminergic neurons, which could also be used as therapeutic proteins, is highly warranted. In the present study, we identified and characterized a novel protein named conserved dopamine neurotrophic factor (CDNF), a homologous protein to mesencephalic astrocyte-derived neurotrophic factor (MANF). Others have shown that MANF supports the survival of embryonic midbrain dopaminergic neurons in vitro, and protects cultured cells against endoplasmic reticulum (ER) stress. CDNF and MANF form a novel evolutionary conserved protein family with characteristic eight conserved cysteine residues in their primary structure. The vertebrates have CDNF and MANF encoding genes, whereas the invertebrates, including Drosophila and Caenorhabditis have a single homologous CDNF/MANF gene. In this study we show that CDNF and MANF are secreted proteins. They are widely expressed in the mammalian brain, including the midbrain and striatum, and in several non-neuronal tissues. We expressed and purified recombinant human CDNF and MANF proteins, and tested the neurotrophic activity of CDNF on midbrain dopaminergic neurons using a 6-hydroxydopamine (6-OHDA) rat model of PD. In this model, a single intrastriatal injection of CDNF protected midbrain dopaminergic neurons and striatal dopaminergic fibers from the 6-OHDA toxicity. Importantly, an intrastriatal injection of CDNF also restored the functional activity of the nigrostriatal dopaminergic system when given after the striatal 6-OHDA lesion. Thus, our study shows that CDNF is a potential novel therapeutic protein for the treatment of PD. In order to elucidate the molecular mechanisms of CDNF and MANF activity, we resolved their crystal structure. CDNF and MANF proteins have two domains; an amino (N)-terminal saposin-like domain and a presumably unfolded carboxy (C)-terminal domain. The saposin-like domain, which is formed by five α-helices and stabilized by three intradomain disulphide bridges, may bind to lipids or membranes. The C-terminal domain contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus facilitate protein folding in the ER. Our studies suggest that CDNF and MANF are novel potential therapeutic proteins for the treatment of neurodegenerative diseases. Future studies will reveal the neurotrophic and cytoprotective mechanisms of CDNF and MANF in more detail.
Resumo:
The hallmark of mammalian spermiogenesis is the dramatic chromatin remodeling process wherein the nucleosomal histones are replaced by the transition proteins TP1, TP2, and TP4. Subsequently these transition proteins are replaced by the protamines P1 and P2. Hyperacetylation of histone H4 is linked to their replacement by transition proteins. Here we report that TP2 is acetylated in vivo as detected by anti-acetylated lysine antibody and mass spectrometric analysis. Further, recombinant TP2 is acetylated in vitro by acetyltransferase KAT3B (p300) more efficiently than by KAT2B (PCAF). In vivo p300 was demonstrated to acetylate TP2. p300 acetylates TP2 in its C-terminal domain, which is highly basic in nature and possesses chromatin-condensing properties. Mass spectrometric analysis showed that p300 acetylates four lysine residues in the C-terminal domain of TP2. Acetylation of TP2 by p300 leads to significant reduction in its DNA condensation property as studied by circular dichroism and atomic force microscopy analysis. TP2 also interacts with a putative histone chaperone, NPM3, wherein expression is elevated in haploid spermatids.Interestingly, acetylation of TP2 impedes its interaction with NPM3. Thus, acetylation of TP2 adds a new dimension to its role in the dynamic reorganization of chromatin during mammalian spermiogenesis.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N-7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Resumo:
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.
Resumo:
Sesbania mosaic virus (SeMV),a single-strand positive-sense RNA plant virus, belongs to the genus Sobemoviruses. Mechanism of replication in Sobemoviruses is poorly understood. In the present study, SeMV RNA-dependent RNA polymerase (RdRp) was overexpressed and purified as a thioredoxin-tagged protein. The recombinant SeMV RdRp could synthesize RNA from genomic or subgenomic RNA templates, even in the absence ofthe protein primer, VPg. Analysis of the product indicated that it was double-stranded and that the mode of initiation was de novo. Mutational analysis of the 3' UTR of subgenomic RNA revealed that a stem-loop structure at the 3' end was important. Further, analysis of this stem-loop showed that the SeMV RdRp was capable of recognizing stem-loop structures of various lengths and forms. These results demonstrate that the SeMV RdRp is capable of primer-independent RNAsynthesis in vitro. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
One of the major limitations to the application of high-resolution biophysical techniques such as X-crystallography and spectroscopic analyses to structure-function studies of Saccharomyces cerevisiae Hop1 protein has been the non-availability of sufficient quantities of functionally active pure protein. This has, indeed, been the case of many proteins, including yeast synaptonemal complex proteins. In this study, we have performed expression screening in Escherichia coli host strains, capable of high-level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed for expression and purification of S. cerevisiae Hop1 protein, based on the presence of hexa-histidine tag and double-stranded DNA-Cellulose chromatography. Recombinant S. cerevisiae Hop1 protein was >98% pure and exhibited DNA-binding activity with high-affinity to the Holliday junction. The availability of the recombinant HOP1 expression vector and active Hop1 protein would facilitate structure-function investigations as well as the generation of appropriate truncated and site-directed mutant proteins, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetyl-glucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. beta-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Resumo:
Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/ 2-NF-kappa B signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.