847 resultados para Radio frequency modulation.
Resumo:
Active radio-frequency identification systems that are used for the localisation and tracking of people will be subject to the same body centric processes that impact other forms of wearable communications. To achieve the goal of creating body worn tags with multiyear life spans, it will be necessary to gain an understanding of the channel conditions which are likely to impact the reader-tag interrogation process. In this paper we present the preliminary results of an indoor channel measurement campaign conducted at 868 MHz aimed at understanding and modelling signal characteristics for a wrist-worn tag. Using a model selection process based on the Akaike Information Criterion, the lognormal distribution was selected most often to describe the received signal amplitude. Parameter estimates are provided so that the channels investigated in this study may be readily simulated.
Resumo:
Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.
Resumo:
A multiuser dual-hop relaying system over mixed radio frequency/free-space optical (RF/FSO) links is investigated. Specifically, the system consists of m single-antenna sources, a relay node equipped with n≥ m receive antennas and a single photo-aperture transmitter, and one destination equipped with a single photo-detector. RF links are used for the simultaneous data transmission from multiple sources to the relay. The relay operates under the decode-and-forward protocol and utilizes the popular V-BLAST technique by successively decoding each user's transmitted stream. Two common norm-based orderings are adopted, i.e., the streams are decoded in an ascending or a descending order. After V-BLAST, the relay retransmits the decoded information to the destination via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived, while closed-form asymptotic expressions are also presented. Capitalizing on the derived results, some engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.
Resumo:
O trabalho apresentado teve origem no projecto de investigação “Tailored Thin Plasma Polymers Films for Surface Engineering of Coil Coated Steel”, financiado pelo Programa Europeu ECSC Steel Research. Sistemas de aço galvanizado pré-pintado em banda à base de poliéster e poliuretano foram submetidos a um processo de polimerização por plasma onde um filme fino foi depositado de modo a modificar as propriedades de superfície. Foram usados reactores de cátodo oco, microondas e rádio frequência para a deposição do polímero fino. Os sistemas preparados foram analisados de modo a verificar a influência do processo de polimerização por plasma na alteração das propriedades barreira dos sistemas pré-pintados em banda. Foi estudado o efeito dos diferentes passos do processo de polimerização por plasma, bem como o efeito de diferentes variáveis operatórias. A mistura precursora foi variada de modo a modificar as propriedades da superfície de modo a poder vir a obter maior hidrofobicidade, maior resistência a marcas digitais, bem como maior facilidade de limpeza. Os testes foram conduzidos em solução de NaCl 0,5 M. Para o trabalho foram usadas técnicas de análise da morfologia da superfície como Microscopia de Força Atómica e Microscopia Electrónica de Varrimento. As propriedades electroquímicas dos sistemas foram estudadas por Espectroscopia de Impedância Electroquímica. A estrutura dos filmes gerados no processo de polimerização por plasma foi caracterizada por Microscopia de Transmissão Electrónica. A modificação das propriedades ópticas devido ao processo de polimerização por plasma foi também obtida.
Resumo:
Esta tese investiga a caracterização (e modelação) de dispositivos que realizam o interface entre os domínios digital e analógico, tal como os buffers de saída dos circuitos integrados (CI). Os terminais sem fios da atualidade estão a ser desenvolvidos tendo em vista o conceito de rádio-definido-por-software introduzido por Mitola. Idealmente esta arquitetura tira partido de poderosos processadores e estende a operação dos blocos digitais o mais próximo possível da antena. Neste sentido, não é de estranhar que haja uma crescente preocupação, no seio da comunidade científica, relativamente à caracterização dos blocos que fazem o interface entre os domínios analógico e digital, sendo os conversores digital-analógico e analógico-digital dois bons exemplos destes circuitos. Dentro dos circuitos digitais de alta velocidade, tais como as memórias Flash, um papel semelhante é desempenhado pelos buffers de saída. Estes realizam o interface entre o domínio digital (núcleo lógico) e o domínio analógico (encapsulamento dos CI e parasitas associados às linhas de transmissão), determinando a integridade do sinal transmitido. Por forma a acelerar a análise de integridade do sinal, aquando do projeto de um CI, é fundamental ter modelos que são simultaneamente eficientes (em termos computacionais) e precisos. Tipicamente a extração/validação dos modelos para buffers de saída é feita usando dados obtidos da simulação de um modelo detalhado (ao nível do transístor) ou a partir de resultados experimentais. A última abordagem não envolve problemas de propriedade intelectual; contudo é raramente mencionada na literatura referente à caracterização de buffers de saída. Neste sentido, esta tese de Doutoramento foca-se no desenvolvimento de uma nova configuração de medição para a caracterização e modelação de buffers de saída de alta velocidade, com a natural extensão aos dispositivos amplificadores comutados RF-CMOS. Tendo por base um procedimento experimental bem definido, um modelo estado-da-arte é extraído e validado. A configuração de medição desenvolvida aborda não apenas a integridade dos sinais de saída mas também do barramento de alimentação. Por forma a determinar a sensibilidade das quantias estimadas (tensão e corrente) aos erros presentes nas diversas variáveis associadas ao procedimento experimental, uma análise de incerteza é também apresentada.
Resumo:
This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.
Resumo:
This paper presents the design and implementation of a dual–tracking Radio Frequency (RF) front–end for a multi–constellation Global Navigation Satellite Systems (GNSS) receiver. The RF frond–end is based on the direct RF conversion architecture, which employs sub–Nyquist sampling (also known as subsampling) at RF. The dual–tracking RF front–end is composed of a few RF components that are duplicated to form the two RF channels. Employing a dual–channel Analogue–to–Digital Converter (ADC) enables synchronisation of the RF channels and minimises the errors resulting from the differences in the satellite clocks and the propagation delay between the two RF channels. The digitised GNSS signals are processed by two separate acquisition and tracking engines that are driven by the front–end’s master clock. This setup provides two synchronised receivers that are integrated onto one piece of hardware. The hardware is intended to be used for research applications such as multipath mitigation, scintillation assessment, and advanced satellite clock and spatial frame transformation modelling.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
Purpose: To develop and evaluate a practical method for the quantification of signal-to-noise ratio (SNR) on coronary MR angiograms (MRA) acquired with parallel imaging.Materials and Methods: To quantify the spatially varying noise due to parallel imaging reconstruction, a new method has been implemented incorporating image data acquisition followed by a fast noise scan during which radio-frequency pulses, cardiac triggering and navigator gating are disabled. The performance of this method was evaluated in a phantom study where SNR measurements were compared with those of a reference standard (multiple repetitions). Subsequently, SNR of myocardium and posterior skeletal muscle was determined on in vivo human coronary MRA.Results: In a phantom, the SNR measured using the proposed method deviated less than 10.1% from the reference method for small geometry factors (<= 2). In vivo, the noise scan for a 10 min coronary MRA acquisition was acquired in 30 s. Higher signal and lower SNR, due to spatially varying noise, were found in myocardium compared with posterior skeletal muscle.Conclusion: SNR quantification based on a fast noise scan is a validated and easy-to-use method when applied to three-dimensional coronary MRA obtained with parallel imaging as long as the geometry factor remains low.
Resumo:
Relación entre anchoveta y ambiente a diferentes escalas temporales. Bol Inst Mar Perú 25(1-2):13-21.- Se estudió la relación del ambiente y la anchoveta peruana (Engraulis ringens) en el Ecosistema de Afloramiento Peruano (EAP). Se hipotetiza que en la zona de afloramiento comprendida entre 5°S - 13°S se presenta una relación negativa entre la temperatura, concentración de oxígeno y desembarques de anchoveta en escalas de tiempo decadales. En series de tiempo mensuales observadas entre 1950 – 2008, se analizó la temperatura superficial, subsuperficial, oxígeno, clorofila-a y desembarques de anchoveta y sardina, aplicando métodos estadísticos y espectrales para obtener modos temporales decadales y caracterizar la modulación a baja frecuencia de sus ciclos estacionales. También se usaron datos de reanálisis para caracterizar los cambios estacionales a partir de los forzamientos (remoto y local) ambientales del EAP. Se encontró una fuerte asociación a escala decadal entre las series ambientales costeras y los desembarques de anchoveta y se sugiere que la covariabilidad ambiental en escalas temporales interanuales, intraestacionales, decadales, seculares frente al EAP se incrementará durante la próxima década.
Resumo:
ZnGa2O4:Dy3+ phosphor thin films were deposited on quartz substrates by radio frequency rf magnetron sputtering and the effect of substrate temperature on its structural and luminescent properties was investigated. Polycrystalline film could be deposited even at room temperature. The crystalline behavior, Zn/Ga ratio, and surface morphology of the films were found to be highly sensitive to substrate temperature. Under UV illumination, the as-deposited films at and above 300°C gave white luminescence even without any postdeposition treatments. The photoluminescent PL emission can be attributed to the combined effect of multicolor emissions from the single luminescence center Dy3+ via host-sensitization. Maximum PL emission intensity was observed for the film deposited at 600°C, and the CIE chromaticity coordinates of the emission were determined to be x,y = 0.34, 0.31 .
Resumo:
Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.
Resumo:
The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.