977 resultados para Radiation Oncology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solar radiation flux at the earth's surface has gone through decadal changes of decreasing and increasing trends over the globe. These phenomena known as dimming and brightening, respectively, have attracted the scientific interest in relation to the changes in radiative balance and climate. Despite the interest in the solar dimming/brightening phenomenon in various parts of the world, south Asia has not attracted great scientific attention so far. The present work uses the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004. From the analysis it is seen that solar dimming continues over south Asia with a trend of -0.54 Wm(-2) yr(-1). Assuming clear skies an average decrease of -0.05 Wm(-2)yr(-1) in NDSWR was observed, which is attributed to increased aerosol emissions over the region. There is evidence that the increase in cloud optical depth plays the major role for the solar dimming over the area. The cloud optical depth (MERRA retrievals) has increased by 10.7% during the study period, with the largest increase to be detected for the high-level (atmospheric pressure P < 400 hPa) clouds (31.2%). Nevertheless, the decrease in solar radiation and the role of aerosols and clouds exhibit large monthly and seasonal variations directly affected by the local monsoon system, the anthropogenic and natural aerosol emissions. All these aspects are examined in detail aiming at shedding light into the solar dimming phenomenon over a densely populated area. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent generic rearrangement of the circumtropical distributed skink genus `Mabuya' has raised a lot of debate. According to this molecular phylogeny based rearrangement, the tropical Asian members of this genus have been assigned to Eutropis. However, in these studies the Asian members of `Mabuya' were largely sampled from Southeast (SE) Asia with very few species from Indian subcontinent. To test the validity of this assignment and to determine the evolutionary origin of Indian members of this group we sequenced one nuclear and two mitochondrial genes from most of the species from the Indian subregion. The nuclear and mitochondrial trees generated from these sequences confirmed the monophyly of the tropical Asian Eutropis. Furthermore, in the tree based on the combined mitochondrial and nuclear dataset an endemic Indian radiation was revealed that was nested within a larger Asian clade. Results of dispersal-vicariance analysis and molecular dating suggested an initial dispersal of Eutropis from SE Asia into India around 5.5-17 million years ago, giving rise to the extant members of the endemic Indian radiation. This initial dispersal was followed by two back dispersals from India into SE Asia. We also discuss the relationships within the endemic Indian radiation and its taxonomic implications. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of graphene, graphene oxide, and related nanocarbons with radiation gives rise to many novel properties and phenomena. Irradiation of graphene oxide in solid state or in solution by sunlight, UV radiation, or excimer laser radiation reduces it to graphene with negligible oxygen functionalities on the surface. This transformation can be exploited for nanopatterning and for large scale production of reduced graphene oxide (RGO). Laser-induced dehydrogenation of hydrogenated graphene can also be used for this purpose. All such laser-induced transformations are associated with thermal effects. RGO emits blue light on UV excitation, a feature that can be used to generate white light in combination with a yellow emitter. RGO as well as graphene nanoribbons are excellent detectors of infra-red radiation while RGO is a good UV detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of similar to 29 K at its cold end, the two-stage PTC reaches similar to 2.9 K in its second stage cold end and similar to 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of similar to 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni/HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background of the Work: The phylogenetic position and evolution of Hemidactylus anamallensis (family Gekkonidae) has been much debated in recent times. In the past it has been variously assigned to genus Hoplodactylus (Diplodactylidae) as well as a monotypic genus `Dravidogecko' (Gekkonidae). Since 1995, this species has been assigned to Hemidactylus, but there is much disagreement between authors regarding its phylogenetic position within this genus. In a recent molecular study H. anamallensis was sister to Hemidactylus but appeared distinct from it in both mitochondrial and nuclear markers. However, this study did not include genera closely allied to Hemidactylus, thus a robust evaluation of this hypothesis was not undertaken. Methods: The objective of this study was to investigate the phylogenetic position of H. anamallensis within the gekkonid radiation. To this end, several nuclear and mitochondrial markers were sequenced from H. anamallensis, selected members of the Hemidactylus radiation and genera closely allied to Hemidactylus. These sequences in conjunction with published sequences were subjected to multiple phylogenetic analyses. Furthermore the nuclear dataset was also subjected to molecular dating analysis to ascertain the divergence between H. anamallensis and related genera. Results and Conclusion: Results showed that H. anamallensis lineage was indeed sister to Hemidactylus group but was separated from the rest of the Hemidactylus by a long branch. The divergence estimates supported a scenario wherein H. anamallensis dispersed across a marine barrier to the drifting peninsular Indian plate in the late Cretaceous whereas Hemidactylus arrived on the peninsular India after the Indian plate collided with the Eurasian plate. Based on these molecular evidence and biogeographical scenario we suggest that the genus Dravidogecko should be resurrected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi2Zr2O7 was synthesized via a facile solution combustion method. Two different fuels, urea and tartaric acid were used in the synthesis, which resulted in Bi2Zr2O7 crystals with different band gaps and surface areas. The structure has been determined by Rietveld refinement followed by the difference Fourier technique. The compound crystallizes in the space group Fm (3) over barm. The photocatalytic degradation of two dyes was carried out under solar radiation. Bi2Zr2O7 prepared using urea as the fuel exhibits a higher photocatalytic activity than the compound prepared using tartaric acid and comparable activity to that of commercial Evonik P-25 TiO2. It is suggested that this is due to the oxygen vacancies occurring in the two cases, the urea based compound has an occupancy of 0.216, whereas the tartaric acid based synthesis shows disorder in the oxygen position amounting to a small number of oxygen vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of partial heating/cooling of the wall on the mixed convection with thermal radiation in incompressible laminar pipe flow has been investigated. The gas is assumed to be gray, emitting and absorbing with constant thermophysical properties except the density variation in the buoyancy term. The partial heating/cooling of the wall has significant effect on the Nusselt number. The radiation parameter increases the heat transfer, but reduces the effect of buoyancy. The heat transfer also increases with the optical thickness until a certain value, beyond which it decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale ( measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m(-2) yr(-1) in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subgenus Geckoella, the only ground-dwelling radiation within Cyrtodactylus, closely overlaps in distribution with brookii group Hemidactylus in peninsular India and Sri Lanka. Both groups have Oligocene origins, the latter with over thrice as many described species. The striking difference in species richness led us to believe that Geckoella diversity is underestimated, and we sampled for Geckoella across peninsular India. A multi-locus phylogeny reveals Geckoella diversity is hugely underestimated, with at least seven undescribed species, doubling previously known richness. Strikingly, the new species correspond to cryptic lineages within described Indian species (complexes); a number of these endemic lineages from the hills of peninsular India outside the Western Ghats, highlighting the undocumented diversity of the Indian dry zone. The Geckoella phylogeny demonstrates deep splits between the Indian species and Sri Lankan G. triedrus, and between Indian dry and wet zone clades, dating back to the late Oligocene. Geckoella and brookii group Hemidactylus show contrasting diversification patterns. Geckoella shows signals of niche conservatism and appears to have retained its ancestral forest habitat. The late Miocene burst in speciation in Geckoella may be linked to the expansion of rain forests during the mid-Miocene climatic optimum and subsequent fragmentation with increasing late Miocene aridification. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by similar to 23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (similar to 1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (similar to 8 %) and net primary productivity (similar to 3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous and fluffy ZnO photocatalysts were successfully prepared via simple solution based combustion synthesis method. The photocatalytic inactivation of Escherichia coli bacteria was studied separately for both Ag substituted and impregnated ZnO under irradiation of natural solar light. A better understanding of substitution and impregnation of Ag was obtained by Raman spectrum and X-ray photoelectron analysis. The reaction parameters such as catalyst dose, initial bacterial concentration and effect of hydroxyl radicals via H2O2 addition were also studied for ZnO catalyst. Effective inactivation was observed with 0.25 g L-1 catalyst loading having 10(9) CFU mL(-1) bacterial concentration. With an increase in molarity of H2O2, photocatalytic inactivation was enhanced. The effects of different catalysts were studied, and highest bacterial killing was observed by Ag impregnated ZnO with 1 atom% Ag compared to Ag substituted ZnO. This enhanced activity can be attributed to effective charge separation that is supported by photoluminescence studies. The kinetics of reaction in the presence of different scavengers showed that reaction is significantly influenced by the presence of hole and hydroxyl radical scavenger with high efficiency.