956 resultados para RNA-dependent RNA polymerase 1 gene
Resumo:
General transcription factor IIH (TFIIH) consists of nine sub- units: cyclin-dependent kinase 7 (Cdk7), cyclin H and MAT1 (forming the Cdk-activating-kinase or CAK complex), the two helicases Xpb/Hay and Xpd, and p34, p44, p52 and p62 (refs 1–3). As the kinase subunit of TFIIH, Cdk7 participates in basal transcription by phosphorylating the carboxy-terminal domain of the largest subunit of RNA polymerase II1,4,5. As part of CAK, Cdk7 also phosphorylates other Cdks, an essential step for their activation6–9. Here we show that the Drosophila TFIIH com- ponent Xpd negatively regulates the cell cycle function of Cdk7, the CAK activity. Excess Xpd titrates CAK activity, resulting in decreased Cdk T-loop phosphorylation, mitotic defects and lethality, whereas a decrease in Xpd results in increased CAK activity and cell proliferation. Moreover, Xpd is downregulated at the beginning of mitosis when Cdk1, a cell cycle target of Cdk7, is most active. Downregulation of Xpd thus seems to contribute to the upregulation of mitotic CAK activity and to regulate mitotic progression positively. Simultaneously, the downregulation of Xpd might be a major mechanism of mitotic silencing of basal transcription.
Resumo:
UNLABELLED We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus.
Resumo:
The sigma (σ) subunit of eubacterial RNA polymerase is required for recognition of and transcription initiation from promoter DNA sequences. One family of sigma factors includes those related to the primary sigma factor from E. coli, σ70. Members of the σ70 family have four highly conserved domains, of which regions 2 through 4 are present in all members. Region 1 can be subdivided into regions 1.1 and 1.2. Region 1.1 affects DNA binding by σ 70 alone, as well as transcription initiation by holoenzyme. Region 1.2, present and highly conserved in most sigma factors, has not yet been assigned a putative function, although previous work demonstrated that it is not required for either association with the core subunits of RNA polymerase or promoter specific binding by holoenzyme. This study primarily investigates the functional role of region 1.2 during transcription initiation. In vivo and in vitro characterization of thirty-two single amino acid substitutions targeted to region 1.2 of E. coli σ70 as well as a deletion of region 1.2, revealed that mutations in region 1.2 can affect promoter binding, open complex formation, initiated complex formation, and the transition from abortive transcription to elongation. The relative degree of solvent exposure of several positions in region 1.2 has been determined, with positions 116 and 122 likely to be located near the surface of σ70. ^ During the course of this study, the existence of two “wild type” variants of E. coli σ70 was discovered. The identity of amino acid 149 has been reported variably as either arginine or aspartic acid in published articles and in online databases. In vivo and in vitro characterization of the two reported variations of E. coli σ70 (N149 and D149) has determined that the two variants are functionally equivalent. However, in vivo and in vitro characterization of single amino acid substitutions and a region 1.2 deletion in the context of each variant background revealed that the behavior of some mutations are greatly affected by the identity of amino acid 149. ^
Resumo:
Lodestar, a Drosophila maternal-effect gene, is essential for proper chromosome segregation during embryonic mitosis. Mutations in lodestar cause chromatin bridging in anaphase, preventing the sister chromatids from fully separating and leaving chromatin tangled at the metaphase plate. Drosophila lodestar protein was originally identified, in purified fractions of Drosophila Kc cell nuclear extracts, by its ability to suppress the generation of long RNA polymerase II transcripts. The human homolog of this protein (hLodestar) was cloned and studied in comparison to the Drosophila lodestar activities. The results of these studies show, similar to the Drosophila protein, hLodestar has dsDNA-dependent ATPase and transcription termination activity in vitro. hLodestar has also been shown to release RNA polymerase I and II stalled at a cyclobutane thymine dimer. Lodestar belongs to the SNF2 family of proteins, which are members of the DExH/D helicase super-family. The SNF2 family of proteins are believed to play a critical role in altering protein-DNA interactions in a variety of cellular contexts. We have recently isolated a human cDNA (hLodestar) that shares significant homology to the Drosophila lodestar gene. The 4.6 kb clone contains an open reading frame of 1162 amino acids, and shares 55% similarity and 46% identity to the Drosophila Lodestar protein sequence. Our studies looking for hLodestar interacting proteins revealed an association with CDC5L in the yeast two-hybrid system and co-immunoprecipitation experiments. CDC5L has been well documented to be a component of the spliceosome. Our data suggests hLodestar is involved in splicing through in vitro assembly and splicing reactions, in addition to its association with spliceosomes purified from HeLa nuclear extract. Although many other members of the DExH/D helicase super-family have been linked to splicing, this is the first SNF2 family member to be implicated in the splicing reaction. ^
Resumo:
Structure-function analysis of human Integrator subunit 4 Anupama Sataluri Advisor: Eric. J. Wagner, Ph.D. Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent discovery of the machinery that mediates this process. In 2005, a complex of 14 subunits (the Integrator complex) associated with RNA Polymerase-II was discovered. The 14subunits were annotated Integrator 1-14 based on their size. The subunits of this complex together were found to facilitate 3′ end processing of snRNA. Identification of the Integrator complex propelled research in the direction of understanding the events of snRNA 3’end processing. Recent studies from our lab confirmed that Integrator subunit (IntS) 9 and 11 together perform the endonucleolytic cleavage of the nascent snRNA 3′ end to generate mature snRNA. However, the role of other members of the Integrator complex remains elusive. Current research in our lab is focused on deciphering the role of each subunit within the Integrator complex This work specifically focuses on elucidating the role of human Integrator subunit 4 (IntS4) and understanding how it facilitates the overall function of the complex. IntS4 has structural similarity with a protein called “Symplekin”, which is part of the mRNA 3’end processing machinery. Symplekin has been thoroughly researched in recent years and structure-function correlation studies in the context of mRNA 3’end processing have reported a scaffold function for Symplekin due to the presence of HEAT repeat motifs in its N-terminus. Based upon the structural similarity between IntS4 and Symplekin, we hypothesized that Integrator subunit 4 may be behaving as a Symplekin-like scaffold molecule that facilitates the interaction between other members of the Integrator Complex. To answer this question, the two important goals of this study were to: 1) identify the region of IntS4, which is important for snRNA 3′ end processing and 2) determine binding partners of IntS4 which promote its function as a scaffold. IntS4 structurally consists of a highly conserved N-terminus with 8 HEAT repeats, followed by a nonconserved C- terminus. A series of siRNA resistant N and C-terminus deletion constructs as well as specific point mutants within its N-terminal HEAT repeats were generated for human IntS4 and, utilizing a snRNA transcriptional readthrough GFP-reporter assay, we tested their ability to rescue misprocessing. This assay revealed a possible scaffold like property of IntS4. To probe IntS4 for interaction partners, we performed co-immunoprecipitation on nuclear extracts of IntS4 expressing stable cell lines and identified IntS3 and IntS5 among other Integrator subunits to be binding partners which facilitate the scaffold like function of hIntS4. These findings have established a critical role for IntS4 in snRNA 3′ end processing, identified that both its N and C termini are essential for its function, and mapped putative interaction domains with other Integrator subunits.
Resumo:
Formation of a triple helix resulting from oligonucleotide binding to the DNA double helix offers new possibilities to control gene expression at the transcriptional level. Purine-motif triplexes can be formed under physiological pH. Nevertheless, this formation was inhibited by certain monovalent cations during the association but not during dissociation. Since triplexes are very stable, it was possible to assemble them in the absence of KCl and have them survive throughout the course of an in vitro transcription reaction. As for the design of a better triplex-forming oligonucleotide, 12 nucleotides in length afforded the highest binding affinity. G/T-rich oligonucleotides can be very polymorphic in solution. The conditions for forming purine-motif triplexes, duplexes or G-quartets were determined. Understanding these parameters will be important for the practical use of G-rich oligonucleotides in the development of DNA aptamers where the structure of the oligonucleotide is paramount in dictating its function. Finally, purine-motif triplexes were demonstrated to significantly inhibit gene transcription in vitro. The optimal effect on this process was dependent on the location of triplexes within the promoter, i.e., whether upstream or proximally downstream of the transcription start site. The mechanism for the inhibition of transcription appeared to be interference with initiation through preventing engagement by RNA polymerase. This finding is revolutionary when compared to the conventional model where triplexes inhibit transcription only by occluding binding by trans-acting proteins. Our findings broaden the utility of triplexes and support a strategy for antigene therapy by triplexes. ^
Resumo:
The Reoviridae virus family is a group of economically and pathologically important viruses that have either single-, double-, or triple-shelled protein layers enclosing a segmented double stranded RNA genome. Each virus particle in this family has its own viral RNA dependent RNA polymerase and the enzymatic activities necessary for the mature RNA synthesis. Based on the structure of the inner most cores of the viruses, the Reoviridae viruses can be divided into two major groups. One group of viruses has a smooth surfaced inner core, surrounded by complete outer shells of one or two protein layers. The other group has an inner core decorated with turrets on the five-fold vertices, and could either completely lack or have incomplete outer protein layers. The structural difference is one of the determinant factors for their biological differences during the infection. ^ Cytoplasmic polyhedrosis virus (CPV) is a single-shelled, turreted virus and the structurally simplest member in Reoviridae. It causes specific chronic infections in the insect gut epithelial cells. Due to its wide range of insect hosts, CPV has been engineered as a potential insecticide for use in fruit and vegetable farming. Its unique structural simplicity, unparalleled capsid stability and ease of purification make CPV an ideal model system for studying the structural basis of dsRNA virus assembly at the highest possible resolution by electron cryomicroscopy (cryoEM) and three-dimensional (3D) reconstruction. ^ In this thesis work, I determined the first 3D structure of CPV capsids using 100 kV cryoEM. At an effective resolution of 17 Å, the full capsid reveals a 600-Å diameter, T = 1 icosahedral shell decorated with A and B spikes at the 5-fold vertices. The internal space of the empty CPV is unoccupied except for 12 mushroom-shaped densities that are attributed to the transcriptional enzyme complexes. The inside of the full capsid is packed with icosahedrally-ordered viral genomic RNA. The interactions of viral RNA with the transcriptional enzyme complexes and other capsid proteins suggest a mechanism for RNA transcription and subsequent release. ^ Second, the interactions between the turret proteins (TPs) and the major capsid shell protein (CSPs) have been identified through 3D structural comparisons of the intact CPV capsids with the spikeless CPV capsids, which were generated by chemical treatments. The differential effects of these chemical treatment experiments also indicated that CPV has a significantly stronger structural integrity than other dsRNA viruses, such as the orthoreovirus subcores, which are normally enclosed within outer protein shells. ^ Finally, we have reconstructed the intact CPV to an unprecendented 8 Å resolution from several thousand of 400kV cryoEM images. The 8 Å structure reveals interactions among the 120 molecules of each of the capsid shell protein (CSP), the large protrusion protein (LPP), and 60 molecules of the turret protein (TP). A total of 1980 α-helices and 720 β-sheets have been identified in these capsid proteins. The CSP structure is largely conserved, with the majority of the secondary structures homologous to those observed in the x-ray structures of corresponding proteins of other reoviruses, such as orthoreovirus and bluetongue virus. The three domains of TP are well positioned to play multifunctional roles during viral transcription. The completely non-equivalent interactions between LPP and CSP and those between the anchoring domain of TP and CSP account for the unparalleled stability of this structurally simplest member of the Reoviridae. ^
Resumo:
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides (HuBacteroides)) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens, rotavirus and all pathogens combined. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary.
Resumo:
The KARP-1 (Ku86 Autoantigen Related Protein-1) gene, which is expressed from the human Ku86 autoantigen locus, appears to play a role in mammalian DNA double-strand break repair as a regulator of the DNA-dependent protein kinase complex. Here we demonstrate that KARP-1 gene expression is significantly up-regulated following exposure of cells to DNA damage. KARP-1 mRNA induction was completely dependent on the ataxia telangiectasia and p53 gene products, consistent with the presence of a p53 binding site within the second intron of the KARP-1 locus. These observations link ataxia telangiectasia, p53, and KARP-1 in a common pathway.
Resumo:
Mammalian capping enzymes are bifunctional proteins with both RNA 5′-triphosphatase and guanylyltransferase activities. The N-terminal 237-aa triphosphatase domain contains (I/V)HCXXGXXR(S/T)G, a sequence corresponding to the conserved active-site motif in protein tyrosine phosphatases (PTPs). Analysis of point mutants of mouse RNA 5′-triphosphatase identified the motif Cys and Arg residues and an upstream Asp as required for activity. Like PTPs, this enzyme was inhibited by iodoacetate and VO43− and independent of Mg2+, providing additional evidence for phosphate removal from RNA 5′ ends by a PTP-like mechanism. The full-length, 597-aa mouse capping enzyme and the C-terminal guanylyltransferase fragment (residues 211–597), unlike the triphosphatase domain, bound poly (U) and were nuclear in transfected cells. RNA binding was increased by GTP, and a guanylylation-defective, active-site mutant was not affected. Ala substitution at positions required for the formation of the enzyme-GMP capping intermediate (R315, R530, K533, or N537) also eliminated poly (U) binding, while proteins with conservative substitutions at these sites retained binding but not guanylyltransferase activity. These results demonstrate that the guanylyltransferase domain of mammalian capping enzyme specifies nuclear localization and RNA binding. Association of capping enzyme with nascent transcripts may act in synergy with RNA polymerase II binding to ensure 5′ cap formation.
Resumo:
In Trypanosoma brucei, transcription by RNA polymerase II and 5′ capping of messenger RNA are uncoupled: a capped spliced leader is trans spliced to every RNA. This decoupling makes it possible to have protein-coding gene transcription driven by RNA polymerase I. Indeed, indirect evidence suggests that the genes for the major surface glycoproteins, variant surface glycoproteins (VSGs) in bloodstream-form trypanosomes, are transcribed by RNA polymerase I. In a single trypanosome, only one VSG expression site is maximally transcribed at any one time, and it has been speculated that transcription takes place at a unique site within the nucleus, perhaps in the nucleolus. We tested this by using fluorescence in situ hybridization. With probes that cover about 50 kb of the active 221 expression site, we detected nuclear transcripts of this site in a single fluorescent spot, which did not colocalize with the nucleolus. Analysis of marker gene-tagged active expression site DNA by fluorescent DNA in situ hybridization confirmed the absence of association with the nucleolus. Even an active expression site in which the promoter had been replaced by an rDNA promoter did not colocalize with the nulceolus. As expected, marker genes inserted in the rDNA array predominantly colocalize with the nucleolus, whereas the tubulin gene arrays do not. We conclude that transcription of the active VSG expression site does not take place in the nucleolus.
Resumo:
Editing of RNA changes the read-out of information from DNA by altering the nucleotide sequence of a transcript. One type of RNA editing found in all metazoans uses double-stranded RNA (dsRNA) as a substrate and results in the deamination of adenosine to give inosine, which is translated as guanosine. Editing thus allows variant proteins to be produced from a single pre-mRNA. A mechanism by which dsRNA substrates form is through pairing of intronic and exonic sequences before the removal of noncoding sequences by splicing. Here we report that the RNA editing enzyme, human dsRNA adenosine deaminase (DRADA1, or ADAR1) contains a domain (Zα) that binds specifically to the left-handed Z-DNA conformation with high affinity (KD = 4 nM). As formation of Z-DNA in vivo occurs 5′ to, or behind, a moving RNA polymerase during transcription, recognition of Z-DNA by DRADA1 provides a plausible mechanism by which DRADA1 can be targeted to a nascent RNA so that editing occurs before splicing. Analysis of sequences related to Zα has allowed identification of motifs common to this class of nucleic acid binding domain.
Resumo:
We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.
Resumo:
The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression.
Resumo:
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1–8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22–6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12–20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.