588 resultados para REDUNDANCY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden zwei Strukturmutationslinien von Drosophila melanogaster, grf und ebo, hinsichtlich ihres Lauf- und Orientierungsverhaltens im Buridanschen sowie im Detour-Paradigma untersucht. Als Kernthema der Arbeit entwickelte sich rasch die molekulare Analyse von ebo in Bezug auf das räumliche Orientierungsgedächtnis, da ebo-mutante Fliegen Letzteres nicht zeigen. Durch Wiederherstellen der EBO-Funktion kann der Verhaltensphänotyp der ebo-Mutante in jeder Ringneuronengruppe des Ellipsoidkörpers gerettet werden, jedoch nicht der Strukturdefekt. Zudem wird zur Ausbildung des Orientierungsgedächtnisses EBO nicht während der Entwicklung, sondern akut benötigt. Aufgrund der Tatsache, dass ebo für das nukleäre Protein Exportin6 codiert, und selbiges für den Export von Aktin-Profilin-Komplexen aus dem Zellkern verantwortlich ist (STÜVEN ET AL., 2003), zeigen ebo-Tiere nukleäre Aktin-Akkumulationen sowohl während der Entwicklung in Speicheldrüsen als auch im adulten Gehirn, was mittels Expression eines Actin::GFP-Fusionsproteins gezeigt wurde. Die genetischen Interaktionsexperimente zeigen, dass der anatomische Defekt von ebo durch eine reduzierte Aktin-Polymerisation erfolgt, für den Verhaltensphänotyp jedoch die Aktin-Anreicherung in den Zellkernen von Ringneuronen des Ellipsoidkörpers ursächlich ist. Die erstaunliche Redundanz der Ringneurone in Bezug auf die Rettung des Verhaltensphänotyps legt nahe, dass diffusible Faktoren eine wichtige Rolle für die Ausbildung eines Orientierungsgedächtnisses spielen. Bezüglich dieser Hypothese konnte nachgeweisen werden, dass durch FMRFamid-RNAi in R2- und R4-Ringneuronen des Ellipsoidkörpers das Orientierungsgedächtnis zerstört wird. Eine daraufhin durchgeführte Antikörperfärbung gegen pro-FMRFa in wildtypischen und ebo-mutanten Gehirnen ergab jedoch keine Verschiedenheit die Menge oder Lokalisation betreffend. Die bei ebo vorhandene Anreicherung von Aktin im Zellkern bewirkt, dass die Aktin-Monomere im Nucleus an den Cofaktor dMRTF (Mrtf) binden und diesen somit inaktivieren. Dadurch kann der Transkriptionsfaktor dSRF (bs) nicht mehr durch dMRTF aktiviert werden, was den Orientierungsgedächtnis-Verlust bewirkt. Da es jedoch unwahrscheinlich ist, dass ein Gedächtnis, welches nur wenige Sekunden andauert, von Transkriptionsregulation abhängt, könnte dSRF auch die Genexpression von Molekülen, die schnelle Veränderungen synaptischer Transmission der Ringneurone vermitteln, modulieren. Für die Zukunft wäre es demnach von enormer Bedeutung, weitere Zielgene von dSRF aufzuklären und zu analysieren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In my doctoral thesis I investigated the evolution of demographic traits within eusocial Hymenoptera. In the social bees, wasps and ants, eusociality has a unique effect on life span evolution as female larvae with the same genetic background can develop through phenotypic plasticity to a queen or a worker with vastly diverging life-history traits. Ant queens belong to the longest-lived insect species, while workers in most species live only a fraction of the queen’s life span. The average colony size of a species is positively correlated with social complexity, division of labor and diverging morphological female phenotypes all of which also affect life span. Therefore the demographic traits of interest in this thesis were life span and colony size. To understand the evolution of worker life span I applied a trade-off model that includes both hierarchical levels important in eusocial systems, namely the colony- and the individual-level. I showed that the evolution of worker life span may be an adaptive trait on the colony level to optimize resource allocation and therefore fitness in response to different levels of extrinsic mortality. A shorter worker life span as a result of reduced resource investments under high levels of extrinsic mortality increases colony fitness. In a further study I showed that Lasius niger colonies produce different aging phenotypes throughout colony development. Smaller colonies which apply a different foraging strategy than larger colonies produced smaller workers, which in turn have a longer life span as compared to larger workers produced in larger colonies. With the switch to cooperative foraging in growing colonies individual workers become less important for the colony caused by their increasing redundancy. Alternatively a trade of between growth and life span may lead to the results found in this study. A further comparative analysis to study the effect of colony size on life span showed a correlation between queen and worker life span when colony size is taken into account. While neither worker nor queen life span was associated with colony size, the differences between queen and worker life span increase with larger average colony sizes across all eusocial Hymenoptera. As colony size affects both queen and worker life span, I aimed to understand which factors lead to the small colony sizes displayed by some ant species. I therefore analyzed per-capita productivity at different colony sizes of eight cavity dwelling ant species. Most colonies of the study species grew larger than optimal productivity predicted. Larger colony size was shown to increase colony homeostasis, the predictability of future productivity and in turn the survival probability of the colony. I also showed that species that deploy an individual foraging mode may circumvent the density dependent decline in foraging success by splitting the colony to several nest sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global warming and ocean acidification, due to rising atmospheric levels of CO2, represent an actual threat to terrestrial and marine environments. Since Industrial Revolution, in less of 250 years, pH of surface seawater decreased on average of 0.1 unit, and is expected to further decreases of approximately 0.3-0.4 units by the end of this century. Naturally acidified marine areas, such as CO2 vent systems at the Ischia Island, allow to study acclimatation and adaptation of individual species as well as the structure of communities, and ecosystems to OA. The main aim of this thesis was to study how hard bottom sublittoral benthic assemblages changed trough time along a pH gradient. For this purpose, the temporal dynamics of mature assemblages established on artificial substrates (volcanic tiles) over a 3 year- period were analysed. Our results revealed how composition and dynamics of the community were altered and highly simplified at different level of seawater acidification. In fact, extreme low values of pH (approximately 6.9), affected strongly the assemblages, reducing diversity both in terms of taxa and functional groups, respect to lower acidification levels (mean pH 7.8) and ambient conditions (8.1 unit). Temporal variation was observed in terms of species composition but not in functional groups. Variability was related to species belonging to the same functional group, suggesting the occurrence of functional redundancy. Therefore, the analysis of functional groups kept information on the structure, but lost information on species diversity and dynamics. Decreasing in ocean pH is only one of many future global changes that will occur at the end of this century (increase of ocean temperature, sea level rise, eutrophication etc.). The interaction between these factors and OA could exacerbate the community and ecosystem effects showed by this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eight pieces constituting this Meeting Report are summaries of presentations made during a panel session at the 2011 Association for Practical and Professional Ethics (APPE) annual meeting held between March 3rd and 6th in Cincinnati. Lisa Newton organized the session and served as chair. The panel of eight consisted both of pioneers in the field and more recent arrivals. It covered a range of topics from how the field has developed to where it should be going, from identification of issues needing further study to problems of training the next generation of engineers and engineering-ethics scholars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review on all spider venom components known by the end of 2010 bases on 1618 records for venom compounds from 174 spider species (= 0.41% of all known species) belonging to 32 families (= 29% of all existing spider families). Spiders investigated for venom research are either big (many mygalomorph species, Nephilidae, Ctenidae and Sparassidae) or medically important for humans (e.g. Loxosceles or Latrodectus species). Venom research widely ignored so far the two most species-rich families (Salticidae and Linyphiidae) and strongly neglected several other very abundant families (Araneidae, Lycosidae, Theridiidae, Thomisidae and Gnaphosidae). We grouped the known 1618 records for venom compounds into six categories: low molecular mass compounds (16 % of all compounds), acylpolyamines (11 %), linear peptides (6 %), cysteine-knotted mini-proteins (60 %), neurotoxic proteins (1 %) and enzymes (6 %). Low molecular mass compounds are known from many spider families and contain organic acids, nucleosides, nucleotides, amino acids, amines, polyamines, and some further substances, many of them acting as neurotransmitters. Acylpolyamines contain amino acids (Araneidae and Nephilidae) or not (several other families) and show a very high diversity within one species. Linear peptides, also called cytolytic, membranolytic or antimicrobial, exert a highly specific structure and are so far only known from Ctenidae, Lycosidae, Oxyopidae and Zodariidae. Cysteine-knotted mini-proteins represent the majority of venom compounds because research so far focused on them. They probably occur in most but not all spider families. Neurotoxic proteins so far are only known from theridiid spiders. Enzymes had been neglected for some time but meanwhile it becomes obvious that they play an important role in spider venoms. Sixteen enzymes either cleave polymers in the extracellular matrix or target phospholipids and related compounds in membranes. The overall structure of these compounds is given and the function, as far as it is known, is described. Since several of these component groups are presented in one average spider venom, we discuss the known interactions and synergisms and give reasons for such a functional redundancy. We also discuss main evolutionary pathways for spider venom compounds such as high variability among components of one group, synergistic interactions between cysteine-knotted mini-proteins and other components (low molecular mass compounds and linear peptides), change of function from ion-channel acting mini-proteins to cytolytic effects and replacement of mini-proteins by linear peptides, acylpolyamines, large proteins or enzymes. We also add first phylogenetic considerations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transportation corridors in megaregions present a unique challenge for planners because of the high concentration of development, complex interjurisdictional issues, and history of independent development of core urban centers. The concept of resilience, as applied to megaregions, can be used to understand better the performance of these corridors. Resiliency is the ability to recover from or adjust easily to change. Resiliency performance measures can be expanded on for application to megaregions throughout the United States. When applied to transportation corridors in megaregions and represented by performance measures such as redundancy, continuity, connectivity, and travel time reliability, the concept of resiliency captures the spatial and temporal relationships between the attributes of a corridor, a network, and neighboring facilities over time at the regional and local levels. This paper focuses on the development of performance measurements for evaluating corridor resiliency as well as a plan for implementing analysis methods at the jurisdictional level. The transportation corridor between Boston, Massachusetts, and Washington, D.C., is used as a case study to represent the applicability of these measures to megaregions throughout the country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: There is a need for valid and reliable short scales that can be used to assess social networks and social supports and to screen for social isolation in older persons. DESIGN AND METHODS: The present study is a cross-national and cross-cultural evaluation of the performance of an abbreviated version of the Lubben Social Network Scale (LSNS-6), which was used to screen for social isolation among community-dwelling older adult populations in three European countries. Based on the concept of lack of redundancy of social ties we defined clinical cut-points of the LSNS-6 for identifying persons deemed at risk for social isolation. RESULTS: Among all three samples, the LSNS-6 and two subscales (Family and Friends) demonstrated high levels of internal consistency, stable factor structures, and high correlations with criterion variables. The proposed clinical cut-points showed good convergent validity, and classified 20% of the respondents in Hamburg, 11% of those in Solothurn (Switzerland), and 15% of those in London as at risk for social isolation. IMPLICATIONS: We conclude that abbreviated scales such as the LSNS-6 should be considered for inclusion in practice protocols of gerontological practitioners. Screening older persons based on the LSNS-6 provides quantitative information on their family and friendship ties, and identifies persons at increased risk for social isolation who might benefit from in-depth assessment and targeted interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemokines are small, secreted proteins that orchestrate the migration of cells, which are involved in immune defence, immune surveillance and haematopoiesis. However, chemokines are also implicated in the pathology of various inflammatory diseases, cancers and HIV. The chemokine system is considerably large and has a redundancy in the repertoire of its inflammatory mediators. Therefore, strict regulation of chemokine activity is crucial. Chemokines are the substrate for various proteases including the serine protease CD26/dipeptidyl-peptidase IV and matrix metalloproteinases. Regulation by proteolytic cleavage controls and fine-tunes chemokine function by either enhancing or reducing its chemotactic activity or receptor selectivity. Often chemokines and the proteases that regulate them are produced in the same microenvironment and expression of both may be simultaneously induced by a common stimulus enabling the rapid regulation of chemokine activity. The overall impact of cleaved chemokines in cellular responses is very complex. In this review, we will give an overview on chemokine modification and the respective chemokine modifying proteases. Furthermore, we will summarize the emerging literature describing the consequences in inflammation, haematopoiesis, cancer and HIV infection upon proteolytic chemokine processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High density spatial and temporal sampling of EEG data enhances the quality of results of electrophysiological experiments. Because EEG sources typically produce widespread electric fields (see Chapter 3) and operate at frequencies well below the sampling rate, increasing the number of electrodes and time samples will not necessarily increase the number of observed processes, but mainly increase the accuracy of the representation of these processes. This is namely the case when inverse solutions are computed. As a consequence, increasing the sampling in space and time increases the redundancy of the data (in space, because electrodes are correlated due to volume conduction, and time, because neighboring time points are correlated), while the degrees of freedom of the data change only little. This has to be taken into account when statistical inferences are to be made from the data. However, in many ERP studies, the intrinsic correlation structure of the data has been disregarded. Often, some electrodes or groups of electrodes are a priori selected as the analysis entity and considered as repeated (within subject) measures that are analyzed using standard univariate statistics. The increased spatial resolution obtained with more electrodes is thus poorly represented by the resulting statistics. In addition, the assumptions made (e.g. in terms of what constitutes a repeated measure) are not supported by what we know about the properties of EEG data. From the point of view of physics (see Chapter 3), the natural “atomic” analysis entity of EEG and ERP data is the scalp electric field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Ein- und Auslagerung von Flugfrachtcontainern wird bisher üblicherweise mit Hilfe von entsprechend dimensionierten Regalbediengeräten vorgenommen. Shuttle-Systeme besitzen auch in diesem Bereich Vorteile, wie z. B. eine höhere Energieeffizienz und eine hohe Redundanz. Es wird ein Konzept zur Gestaltung eines solchen Systems vorgestellt. Ebenso wird die Leistungsfähigkeit entsprechender Lager über eine Materialflusssimulation bestimmt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species coexistence has been a fundamental issue to understand ecosystem functioning since the beginnings of ecology as a science. The search of a reliable and all-encompassing explanation for this issue has become a complex goal with several apparently opposing trends. On the other side, seemingly unconnected with species coexistence, an ecological state equation based on the inverse correlation between an indicator of dispersal that fits gamma distribution and species diversity has been recently developed. This article explores two factors, whose effects are inconspicuous in such an equation at the first sight, that are used to develop an alternative general theoretical background in order to provide a better understanding of species coexistence. Our main outcomes are: (i) the fit of dispersal and diversity values to gamma distribution is an important factor that promotes species coexistence mainly due to the right-skewed character of gamma distribution; (ii) the opposite correlation between species diversity and dispersal implies that any increase of diversity is equivalent to a route of “ecological cooling” whose maximum limit should be constrained by the influence of the third law of thermodynamics; this is in agreement with the well-known asymptotic trend of diversity values in space and time; (iii) there are plausible empirical and theoretical ways to apply physical principles to explain important ecological processes; (iv) the gap between theoretical and empirical ecology in those cases where species diversity is paradoxically high could be narrowed by a wave model of species coexistence based on the concurrency of local equilibrium states. In such a model, competitive exclusion has a limited but indispensable role in harmonious coexistence with functional redundancy. We analyze several literature references as well as ecological and evolutionary examples that support our approach, reinforcing the meaning equivalence between important physical and ecological principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study state-based video communication where a client simultaneously informs the server about the presence status of various packets in its buffer. In sender-driven transmission, the client periodically sends to the server a single acknowledgement packet that provides information about all packets that have arrived at the client by the time the acknowledgment is sent. In receiver-driven streaming, the client periodically sends to the server a single request packet that comprises a transmission schedule for sending missing data to the client over a horizon of time. We develop a comprehensive optimization framework that enables computing packet transmission decisions that maximize the end-to-end video quality for the given bandwidth resources, in both prospective scenarios. The core step of the optimization comprises computing the probability that a single packet will be communicated in error as a function of the expected transmission redundancy (or cost) used to communicate the packet. Through comprehensive simulation experiments, we carefully examine the performance advances that our framework enables relative to state-of-the-art scheduling systems that employ regular acknowledgement or request packets. Consistent gains in video quality of up to 2B are demonstrated across a variety of content types. We show that there is a direct analogy between the error-cost efficiency of streaming a single packet and the overall rate-distortion performance of streaming the whole content. In the case of sender-driven transmission, we develop an effective modeling approach that accurately characterizes the end-to-end performance as a function of the packet loss rate on the backward channel and the source encoding characteristics.