957 resultados para RAT-LIVER MITOCHONDRIA
Resumo:
The individual effects of protein deficiency and energy restriction on liver response to low-hexachlorobenzene (HCB) exposure were investigated in adult male Wistar rats. In rats fed either the low-protein or control diet, the only effect caused by HCB was a decrease in paralysis time following an ip injection of zoxazolamine. This decrease was similar for both groups. In the animals subjected to energy restriction, HCB induced a greater decrease in paralysis time, an increase in the size of centrilobular hepatocytes, a lower liver DNA content and an increased concentration of HCB in the adipose tissue, compared with the control and protein-deficient groups. Our data suggest that energy restriction increases liver response to HCB, while protein deficiency does not impair the hepatic reaction to small doses of HCB exposure.
Resumo:
In this study, we show that safranine at the concentrations usually employed as a probe of mitochondrial membrane potential significantly protects against the oxidative damage of mitochondria induced by Fe(II)citrate. The effect of safranine was illustrated by experiments showing that this dye strongly inhibits both production of thiobarbituric acid-reactive substances and membrane potential decrease when energized mitochondria were exposed to Fe(II)citrate in the presence of Ca 2+ ions. Similar results were obtained with the lipophylic compound trifluoperazine. It is proposed that, like trifluoperazine, safranine decreases the rate of lipid peroxidation due to its insertion in the membrane altering the physical state of the lipid phase.
Resumo:
The role of air pollution as a health risk factor is of special interest. Numerous toxic pollutants, such as nickel, are being released to the environment as a result of combustion of fossil fuels, crude oil, and coal. Nickel in the atmosphere can be combined with other environmental pollutants, producing various nickel compounds, which have varying animal toxicity. A rat biossay validated for the identification of toxic effects of nickel revealed increased serum activities of total lactate dehydrogenase (LDH) and alanine transaminase (ALT) in rats that received intratracheal injection of Ni2+ in .09% saline solution of NiCl2. The total LDH activity was also increased in the heart, and the isoenzyme pattern showed the LDH1/LDH2 ratio elevated to greater than 1. We conclude that intratracheal administration of nickel induced cardiac and hepatic damage. The development of cardiac and hepatic damage and of increased enzymes' activities was only demonstrated when nickel had accumulated in these tissues, indicating that nickel depot is essential to its toxicity. Intratracheal administration of NiCl2 induced changes in LDH and ALT activities.
Resumo:
The objective of the present study was to analyze the prospective alterations of the testis and epididymis in a defined strain of alcoholic rats in order to contribute to our understanding of the effects of chronic alcoholism on reproduction. The testis and epididymis of the animals were submitted to morphological analysis by macroscopy, light microscopy and electron microscopy and to morphometric analysis. The UCh rats showed atrophy of the epithelium and reduction of testis and epididymis weight, liver hypertrophy and fat infiltration and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the weight and in the epithelium of the testis and epididymis and in the hypothalamus-pituitary axis of the UCh rats.
Resumo:
Obesity is an increasing problem in several countries, leading to health problems. Physical exercise, in turn, can be used effectively by itself or in combination with dietary restriction to trigger weight loss. The present study was designed to evaluate the effects of aerobic exercise training on lipid profile of obese male Wistar rats in order to verify if this model may be of value for the study of exercise in obesity. Obesity was induced by MSG administration (4mg/g, each other day, from birth to 14 days old) After 14 from drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (exercise trained). Exercise training consisted in 1h/day, 5 days/week, with an overload of 5% bw, for 10 weeks. Rats of the same age and strain, receiving saline at birth, were used as control (C), and subdivided into two groups: C-S and C-T. At the end of the experimental period, MSG-T and C-T rats showed similar blood lactate and muscle glycogen responses to exercise training and acute exercise. MSG-S rats showed significantly higher carcass fat, serum triacylglycerol, serum insulin and liver total fat than C-S rats. On the other hand, MSG-T rats had lower carcass fat, serum triacylglycerol and liver total fat than MSG-S rats. There were no statistical differences in food intake and serum free fatty acids among the groups studied. These data indicate that this model may be of value for the study of exercise effects on tissue and circulating lipid profile in obesity.
Resumo:
A manufactured product (Ectoplus®) composed by a cypermethrin (44.7%) and dichlorvos (4.2%) mixture was administered (10mg/kg/day, orally, by gavage) to pregnant rats, during the periods of gestation+lactation, gestation, and lactation. Control mothers received vehicle aqueous solution during the gestation+lactation period. With the progeny, in the 1-15 post-natal days (PNDI-15) there were observed alterations in the periods of occurrence of teeth, hair, unfolding of ears, and in the developmental period for following reflexes: postural, palmar grasp, negative geotaxis, and acoustic startle reflex. After weaning (PND21), there were observed the presence of cypermethrin and dichlorvos in the blood brain and liver; decrease in weight of liver, of cholinesterase activity in the plasma, liver, and brain, and hepatic metabolizing activity of drugs; alterations of levels of gamma glutamyl transferase enzymes, of creatinine, and of potassium in the serum of the animals. In conclusion, neonatal exposure to a formulated mixture of cypermethrin and dichlorvos is inductive to alterations in characteristics that indicate somatic and neuromuscular development of the progeny, and in certain biochemical parameters. The results suggest that enzymatic assessment associated with somatic and neuromotor assessment can be important markers of developmental characteristics in neonatal toxicity by pesticide formulations based on mixtures of insecticides.
Resumo:
Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.
Resumo:
It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. © 2013 Moura et al; licensee BioMed Central Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: This study evaluated the effect of aminoguanidine on liver of diabetic rats subject to physical exercises using histological and histochemical techniques.Methods: The rats used in this study were divided into five groups: sedentary control, sedentary diabetic, trained diabetic, sedentary diabetic and treated with aminoguanidine, trained diabetic and treated with aminoguanidine.Results: The results showed no effect of aminoguanidine on the liver tissue, although there was improvement with exercise training showing cytological, morpho-histological and histochemical alterations in liver cells of animals from groups trained diabetic and/or treated diabetic compared to those individuals in the sedentary control and sedentary diabetic. These changes included: hepatocytes hypertrophy, presence and distribution of polysaccharides in the hepatocytes cytoplasm and, especially, congestion of the liver blood vessels.Conclusion: Our results suggest that aminoguanidine is not hepatotoxic, when used at dosage of 1 g/L for the treatment of diabetes complications, and confirmed that the practice of moderate physical exercise assuaged the damage caused by diabetes without the use of insulin. © 2013 e Nico et al.; licensee BioMed Central Ltd.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
When calcinine (A-23187) (2 mu M), a known Ca2+ ionophore, is present, a significant protection is observed to a mitochondrial suspension undergoing lipid peroxidation by Fe2+-citrate complex. A-23187 can remove Ca2+, which seems to have an important role in the lipid peroxidation process, from its 'lesive sites' and consequently preventing the damage. This information has importance in terms of knowing the mechanisms and avoiding the damages of lipid peroxidation that occur in some pathological cases such as tumor promotion and hemochromatosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)