969 resultados para Production processes
Resumo:
The interest in zero-valent iron nanoparticles has been increasing significantly since the development of a green production method in which extracts from natural products or wastes are used. However, this field of application is yet poorly studied and lacks knowledge that allows the full understanding of the production and application processes. The aim of the present work was to evaluate the viability of the utilization of several tree leaves to produce extracts which are capable of reducing iron(III) in aqueous solution to form nZVIs. The quality of the extracts was evaluated concerning their antioxidant capacity. The results show that: i) dried leaves produce extracts with higher antioxidant capacities than non-dried leaves, ii) the most favorable extraction conditions (temperature, contact time, and volume:mass ratio) were identified for each leaf, iii) with the aim of developing a green, but also low-cost,method waterwas chosen as solvent, iv) the extracts can be classified in three categories according to their antioxidant capacity (expressed as Fe(II) concentration): >40 mmol L−1; 20–40 mmol L−1; and 2–10 mmol L−1; with oak, pomegranate and green tea leaves producing the richest extracts, and v) TEManalysis proves that nZVIs (d=10–20 nm) can be produced using the tree leaf extracts.
Resumo:
This paper explores the management structure of the team-based organization. First it provides a theoretical model of structures and processes of work teams. The structure determines the team’s responsibilities in terms of authority and expertise about specific regulation tasks. The responsiveness of teams to these responsibilities are the processes of teamwork, in terms of three dimensions, indicating to what extent teams indeed use the space provided to them. The research question that this paper addresses is to what extent the position of responsibilities in the team-based organization affect team responsiveness. This is done by two hypotheses. First, the effect of the so-called proximity of regulation tasks is tested. It is expected that the responsibility for tasks positioned higher in the organization (i.e. further from the team) generally has a negative effect on team responsiveness, whereas tasks positioned lower in the organization (i.e. closer to the team) will have a positive effect on the way in which teams respond. Second, the relationship between the number of tasks for which the team is responsible with team responsiveness is tested. Theory suggests that teams being responsible for a larger number of tasks perform better, i.e. show higher responsiveness. These hypotheses are tested by a study of 109 production teams in the automotive industry. The results show that, as the theory predicts, increasing numbers of responsibilities have positive effects on team responsiveness. However, the delegation of expertise to teams seems to be the most important predictor of responsiveness. Also, not all regulation tasks show to have effects on team responsiveness. Most tasks do not show to have any significant effect at all. A number of tasks affects team responsiveness positively, when their responsibility is positioned lower in the organization, but also a number of tasks affects team responsiveness positively when located higher in the organization, i.e. further from the teams in the production. The results indicate that more attention can be paid to the distribution of responsibilities, in particular expertise, to teams. Indeed delegating more expertise improve team responsiveness, however some tasks might be located better at higher organizational levels, indicating that there are limitations to what responsibilities teams can handle.
Resumo:
The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K X-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double KL and triple KLL ionization, transition probabilities and energies for the deexcitation processes, are calculated in the framework of the multi-configuration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical K$\alpha$ X-ray spectrum is obtained, which is compared to recent experimental data.
Resumo:
We present a generator for single top-quark production via flavour-changing neutral currents. The MEtop event generator allows for Next-to-Leading-Order direct top production pp -> t and Leading-Order production of several other single top processes. A few packages with definite sets of dimension six operators are available. We discuss how to improve the bounds on the effective operators and how well new physics can be probed with each set of independent dimension six operators.
Resumo:
The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp > peel > albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity.
Resumo:
Master Thesis to obtain the Master degree in Chemical Engineering - Branch Chemical Processes
Resumo:
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Doutor em Ambiente
Resumo:
Proceedings IGLC-19, July 2011, Lima, Perú
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Cell-to-cell communication is required for many biological processes in development and adult life. One of the most common systems utilized by a wide range of eukaryotes is the Notch signalling pathway. Four Notch receptors and five ligands have been identified in mammals that interact via their extracellular domains leading to transcription activation. Studies have shown that the Notch ligands expression is undetectable in normal breast tissues, but moderate to high expression has been detected in breast cancer. Thus, any of the Notch1 ligands can be studied as possible therapeutic targets for breast cancer. To study Notch pathway proteins there is the need to obtain stable protein solutions. E. coli is the host of excellence for recombinant proteins for the ease of use, fast growth and high cell densities. However, the expression of mammalian proteins in such systems may overwhelm the bacterial cellular machinery, which does not possess the ability for post-translational modifications, or dedicated compartments for protein synthesis. Mammalian cells are therefore preferred, despite their technical and financial increased demands. We aim to determine the best expression and purification conditions for the different ligand protein constructs, to develop specific function-blocking antibodies using the Phage Display technology. Moreover, we propose to crystallize the Notch1 ligands alone and in complex with the phage display selected antibodies, unveiling molecular details. hJag2DE3 and hDll1DE6 proteins were purified from refolded inclusion bodies or mammalian cell culture supernatants, respectively, and purity was confirmed by SDS-PAGE (>95%). Protein produced in mammalian cells showed to be more stable, apparently with the physiological disulfide pattern, contrary to what was observed in the refolded protein. Several nano-scale crystallization experiments were set up in 96-well plates, but no positive result was obtained. We will continue to pursue for the best expression for the Notch ligand constructs in both expression systems.