872 resultados para Production methods
Resumo:
Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics. The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuously visible on the external cuticle of workers. However, given that fungus-growing ants in the genus Atta do not carry visible Actinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whether improving culturing techniques can allow for successful isolation of Pseudonocardia from Atta cephalotes leaf-cutting ants. We obtained Pseudonocardia from 9 of 11 isolation method/colony component combinations from all 5 colonies intensively sampled. The most efficient technique was bead-beating workers in phosphate buffer solution, then plating the suspension on carboxymethylcellulose medium. Placing these strains in a fungus-growing ant-associated Pseudonocardia phylogeny revealed that while some strains grouped with clades of Pseudonocardia associated with other genera of fungus-growing ants, a large portion of the isolates fell into two novel phylogenetic clades previously not identified from this ant-microbe symbiosis. Our findings suggest that Pseudonocardia may be associated with Atta fungus-growing ants, potentially internalized, and that localizing the symbiont and exploring its role is necessary to shed further light on the association.
Resumo:
This work investigated the effects of temperature and of rate of heating on the kinetic parameters of pyrolysis of castor beans presscake, a byproduct generated in the biodiesel production process. Pyrolysis process was investigated by thermogravimetric analysis, and parameters were obtained from nonisothermal experiments. The results obtained from the process of thermal decomposition indicated the elimination of humidity and the decomposition of organic components of the biomass. DTG curves showed that the heating rate affects the temperature of maximum decomposition of the material. Kinetic parameters such as activation energy and pre-exponential factor were obtained by model-free methods proposed by Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Kissinger. Experimental results showed that the kinetic parameters values of the FWO and KAS methods display good agreement and can be used to understand the mechanism of degradation of the cake. In a generalized way, the results contribute to better understanding of the processes of biomass pyrolysis.
Resumo:
The objective of this study was to evaluate alternatives in small volumes to conventional gradient of Percoll((R)) on semen quality, in vitro embryo production, sex ratio and embryo survival after vitrification. Thawed semen was randomly allocated to one of four density gradient selection methods: (1) conventional Percoll((R)) (P), (2) MiniPercoll (MP), (3) MiniIsolate (MI), and (4) MiniOptiprep (MO). Sperm kinetics and quality were evaluated. Use of P, MP and MI gradients did not affect sperm motility (P > 0.05). However, there was a decrease in total and progressive sperm motility in MO (70.8 and 51.3% vs. 87.3 and 69.5% for P; 87.3 and 73% for MP; 92.3 and 78.8% for MI; P < 0.05). The MO had lower membrane integrity compared with P, MP and MI (39.7 vs. 70.5, 72.3, 63.8%, respectively, P < 0.05). The percentage of blastocysts produced was higher in MI than in MP and MO (21.1 vs. 16.1 and 16.9%, P < 0.05) and similar to P (18.4%; P > 0.05). Sex ratio and embryo survival after vitrification were similar among groups (P > 0.05). Semen selected by Isolate and Optiprep gradient, at the concentrations and small volumes used, demonstrated similar characteristics and in vitro embryo production to conventional Percoll((R)) gradient.
Resumo:
This special volume of the Journal of Cleaner Production is comprised of articles presented at the 3rd International Workshop Advances in Cleaner Production held in Sao Paulo, Brazil, in 2011. The content underscores the recognition of the pressing and inescapable need for making changes from unsustainable to sustainable production and consumption patterns. The 48 articles from 15 countries provide different, but complimentary approaches to help industrial and societal sectors in advancing on their paths towards sustainability. Initiatives and challenges are included, which systematically address problems affecting raw material changes, technological modifications, product and policy changes. The findings range from proposals for alternative uses of wastes, substitution of raw materials for environmentally friendlier substances, optimization of industrial processes by source reductions of wastes and emissions and documented economic and environmental advantages of a wide array of initiatives. The roles of operational and managerial practices are also stressed, highlighting the role of diverse stakeholders as promoters of implementation and internalization of innovative cleaner technologies within companies. Systemic assessment tools are employed and experimented with in order to more effectively evaluate the environmental performance of systems on the biosphere scale. The methodological procedures and proposals presented can help in the design and management of production systems, for governmental and corporate policy development, for implementing and monitoring CP Programs, prevention and mitigation strategies, and evaluation of the outcomes of CP initiatives in the production and service sectors. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A.P. Puga, R.M. Prado, B. Mattiuz, D.W. Vale, and I.M. Fonseca. 2013. Chemical composition of corn and sorghum grains cultivated in Oxisol according to different application methods and doses of zinc. Cien. Inv. Agr. 40(1):97-108. In general, tropical soils present low concentrations of zinc (Zn), and the deficiency of Zn is recognized as a world nutritional problem for cereal production and human beings. Therefore, the main goal of this study was to assess the effects of different methods of Zn application on the quality of corn and sorghum grains grown in Oxisol. Two experiments were set up in the experimental area of UNESP (campus of Jaboticabal, Brazil). The following nine treatments were applied: three doses of Zn by banded application (seed furrows), three doses of Zn by incorporation into soil (0-20 cm depth), foliar application, seed application, and control (no Zn applied). The treatments were arranged in randomized blocks with four replicates. The contents of Zn, carbohydrates and proteins were determined for corn and sorghum grains. Regardless of the method, Zn application promoted higher contents of this micronutrient in corn and sorghum grains. The banded application method of Zn in soil promoted greater contents of total carbohydrates, starch and protein in both cultures. The incorporation of Zn into the soil method provided higher contents of soluble carbohydrates in both corn and sorghum grains.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil management practices are konwn to affect the biomass and enzyme activities of microbial soil communities. To assess whether burning of sugarcane prior to harvesting affects the community of soilborne fungi, we collected soil simples in two sites: burned sugarcane culture prior harvesting (BS) and non-burned sugarcane culture (NBS). A total of 75 filamentous fungal isolates were recovered from soils in both sites. Trichoderma was the most prevalent genus in both sites, followed by Fusarium, Cunninghamella and Aspergillus. The Sorensen's index (0.60) suggested a slight difference in fungi associated with both areas, with high number of fungal isolates found on BB soil. The abundance of Trichoderma isolates in NBS soil was higher than BS soil; however, the abundance of Fusarium, Aspergillus and Cunninghamella was higher in the latter type of soil. In addition, fungi isolated from BS soil showed the highest production of xylanase and laccase in comparision with fungi isolated form NBS soil. Our results indicate that the different types of sugarcane harvesting apparently did not interfere with the diversity of fungal communnities as revealed by culture-dependent methods. In addition, our data indicates the potencial of fungi from soils of sugarcane crops to produce relevant enzymes related to biomass conversion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hydrolysis step for sugar production in biorefineries is crucial for the sequential processes involved and cellulases cocktails behave differently according to the pretreatment employed. In this study, the application of the cellulases cocktail produced by the fungus Myceliophthora thermophila JCP1-4 was studied on the saccharification of sugarcane bagasse pretreated by ozonolysis and thermic ferric nitrate (TFN), and the results were compared with commercial enzymes (Novozymes Celluclast 1.5L, Novozym 188). The fungal cellulases cocktail hold an activity of FPU:β-glucosidase of 1:4(U/mL); time, temperature, FPU by g of cellulose load and percentage of dry matter (DM) were studied. The analysis of central composite design of TFN pretreated showed that fungal cellulases works better in DM values of 3–3.5% (4.5% for commercial), temperatures higher than 50 °C (<45 °C for commercial) and 15FPU for both; commercial enzymes yielded 7.78 g/L of reducing sugars and the fungal enzymes 5.42 g/L. With the ozone pretreated, the fungal enzymes presented a higher thermostability with faster kinects, being able to produce 5.56 g/L of reducing sugars (60 °C, 8 h), against 5.20 g/L for commercial enzymes (50 °C, 24 h), (10FPU, 3%DM for both). The FPU derivate analysis revels better yields with 7.5FPU, and the increase of DM to 7.5% resulted 13.28 g/L of reducing sugars.
Resumo:
Background: Arterial peripheral disease is a condition caused by the blocked blood flow resulting from arterial cholesterol deposits within the arms, legs and aorta. Studies have shown that macrophages in atherosclerotic plaque are highly activated, which makes these cells important antigen-presenting cells that develop a specific immune response, in which LDLox is the inducing antigen. As functional changes of cells which participate in the atherogenesis process may occur in the peripheral blood, the objectives of the present study were to evaluate plasma levels of anti-inflammatory and inflammatory cytokines including TNF-alpha, IFN-gamma, interleukin-6 (IL-6), IL-10 and TGF-beta in patients with peripheral arteriosclerosis obliterans, to assess the monocyte activation level in peripheral blood through the ability of these cells to release hydrogen peroxide (H(2)O(2)) and to develop fungicidal activity against Candida albicans (C. albicans) in vitro.Methods: TNF-alpha, IFN-gamma, IL-6, IL-10 and TGF-beta from plasma of patients were detected by ELISA. Monocyte cultures activated in vitro with TNF-alpha and IFN-gamma were evaluated by fungicidal activity against C. albicans by culture plating and Colony Forming Unit (CFU) recovery, and by H(2)O(2) production.Results: Plasma levels of all cytokines were significantly higher in patients compared to those detected in control subjects. Control group monocytes did not release substantial levels of H(2)O(2) in vitro, but these levels were significantly increased after activation with IFN-gamma and TNF-alpha. Monocytes of patients, before and after activation, responded less than those of control subjects. Similar results were found when fungicidal activity was evaluated. The results seen in patients were always significantly smaller than among control subjects. Conclusions: The results revealed an unresponsiveness of patient monocytes in vitro probably due to the high activation process occurring in vivo as corroborated by high plasma cytokine levels.
Resumo:
Darunavir, a protease inhibitor used in the treatment of HIV infection, presents few methods for its determination in pharmaceuticals. Infrared (IR) spectroscopy offers the possibility of obtaining spectra relatively quickly, providing interesting information, analytically, qualitatively or quantitatively. Capillary electrophoresis (CE) performs separations of high efficiency in shorter time with reagents and samples in small quantity. These two methods are cost-benefitted when we evaluate the green level and the cost of analysis. Faster and cheaper methods without generating organic waste by IR and CE for the quantification of darunavir were developed and validated, focusing socioeconomic impact of analytical decisions. If the cost of acquisition, maintenance, production, analysis and conditioning of drugs and pharmaceuticals is high, consequently the price of this product in the market will be higher and it cannot be accessible to the patient. Treatment failure not only affects the quality of life of patients, but also contributes significantly to the economic burden of the health system. In this context there is a tool called Analysis of the Life Cycle, which comes to make us think in a multidimensional way focusing the whole, the parts and especially the interaction among the parts of a system.