836 resultados para Probabilistic latent semantic analysis (PLSA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retaining walls are one of the important structures in nearshore environment and are generally designed based on deterministic approaches. The present paper focuses on the reliability assessment of cantilever retaining walls with due consideration to the uncertainties in soil parameters. Reliability analysis quantifies the level of reliability associated with designs and the associated risk. It also gives the formalisation of a design situation that is normally recognised by experienced designers and provides a greater level of consistency in design. The results are also examined in terms of a simple cost function. The study shows that sliding mode is the critical failure mode and the consequent failure costs are also higher. The study also shows that provision of shear key results in improved reliability and reduction in expected costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the increasing cost of designing and building new highway pavements, reliability analysis has become vital to ensure that a given pavement performs as expected in the field. Recognizing the importance of failure analysis to safety, reliability, performance, and economy, back analysis has been employed in various engineering applications to evaluate the inherent uncertainties of the design and analysis. The probabilistic back analysis method formulated on Bayes' theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis-Hastings algorithm has proved to be highly efficient to address this issue. It is also quite flexible and is applicable to any type of prior information. In this paper, this method has been used to back-analyze the parameters that influence the pavement life and to consider the uncertainty of the mechanistic-empirical pavement design model. The load-induced pavement structural responses (e.g., stresses, strains, and deflections) used to predict the pavement life are estimated using the response surface methodology model developed based on the results of linear elastic analysis. The failure criteria adopted for the analysis were based on the factor of safety (FOS), and the study was carried out for different sample sizes and jumping distributions to estimate the most robust posterior statistics. From the posterior statistics of the case considered, it was observed that after approximately 150 million standard axle load repetitions, the mean values of the pavement properties decrease as expected, with a significant decrease in the values of the elastic moduli of the expected layers. An analysis of the posterior statistics indicated that the parameters that contribute significantly to the pavement failure were the moduli of the base and surface layer, which is consistent with the findings from other studies. After the back analysis, the base modulus parameters show a significant decrease of 15.8% and the surface layer modulus a decrease of 3.12% in the mean value. The usefulness of the back analysis methodology is further highlighted by estimating the design parameters for specified values of the factor of safety. The analysis revealed that for the pavement section considered, a reliability of 89% and 94% can be achieved by adopting FOS values of 1.5 and 2, respectively. The methodology proposed can therefore be effectively used to identify the parameters that are critical to pavement failure in the design of pavements for specified levels of reliability. DOI: 10.1061/(ASCE)TE.1943-5436.0000455. (C) 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Song-selection and mood are interdependent. If we capture a song’s sentiment, we can determine the mood of the listener, which can serve as a basis for recommendation systems. Songs are generally classified according to genres, which don’t entirely reflect sentiments. Thus, we require an unsupervised scheme to mine them. Sentiments are classified into either two (positive/negative) or multiple (happy/angry/sad/...) classes, depending on the application. We are interested in analyzing the feelings invoked by a song, involving multi-class sentiments. To mine the hidden sentimental structure behind a song, in terms of “topics”, we consider its lyrics and use Latent Dirichlet Allocation (LDA). Each song is a mixture of moods. Topics mined by LDA can represent moods. Thus we get a scheme of collecting similar-mood songs. For validation, we use a dataset of songs containing 6 moods annotated by users of a particular website.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a novel approach that makes use of topic models based on Latent Dirichlet allocation(LDA) for generating single document summaries. Our approach is distinguished from other LDA based approaches in that we identify the summary topics which best describe a given document and only extract sentences from those paragraphs within the document which are highly correlated given the summary topics. This ensures that our summaries always highlight the crux of the document without paying any attention to the grammar and the structure of the documents. Finally, we evaluate our summaries on the DUC 2002 Single document summarization data corpus using ROUGE measures. Our summaries had higher ROUGE values and better semantic similarity with the documents than the DUC summaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncertainty in material properties and traffic characterization in the design of flexible pavements has led to significant efforts in recent years to incorporate reliability methods and probabilistic design procedures for the design, rehabilitation, and maintenance of pavements. In the mechanistic-empirical (ME) design of pavements, despite the fact that there are multiple failure modes, the design criteria applied in the majority of analytical pavement design methods guard only against fatigue cracking and subgrade rutting, which are usually considered as independent failure events. This study carries out the reliability analysis for a flexible pavement section for these failure criteria based on the first-order reliability method (FORM) and the second-order reliability method (SORM) techniques and the crude Monte Carlo simulation. Through a sensitivity analysis, the most critical parameter affecting the design reliability for both fatigue and rutting failure criteria was identified as the surface layer thickness. However, reliability analysis in pavement design is most useful if it can be efficiently and accurately applied to components of pavement design and the combination of these components in an overall system analysis. The study shows that for the pavement section considered, there is a high degree of dependence between the two failure modes, and demonstrates that the probability of simultaneous occurrence of failures can be almost as high as the probability of component failures. Thus, the need to consider the system reliability in the pavement analysis is highlighted, and the study indicates that the improvement of pavement performance should be tackled in the light of reducing this undesirable event of simultaneous failure and not merely the consideration of the more critical failure mode. Furthermore, this probability of simultaneous occurrence of failures is seen to increase considerably with small increments in the mean traffic loads, which also results in wider system reliability bounds. The study also advocates the use of narrow bounds to the probability of failure, which provides a better estimate of the probability of failure, as validated from the results obtained from Monte Carlo simulation (MCS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of ``how much'' information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on ``what'' is coded by primary afferents. Amongst the kinematic variables tested-position, velocity, and acceleration-primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80-90%. The final 10-20% were found to be due to non-linear coding by spike bursts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this paper involves the stochastic finite element analysis of composite-epoxy adhesive lap joints using Monte Carlo simulation. A set of composite adhesive lap joints were prepared and loaded till failure to obtain their strength. The peel and shear strain in the bond line region at different levels of load were obtained using digital image correlation (DIC). The corresponding stresses were computed assuming a plane strain condition. The finite element model was verified by comparing the numerical and experimental stresses. The stresses exhibited a similar behavior and a good correlation was obtained. Further, the finite element model was used to perform the stochastic analysis using Monte Carlo simulation. The parameters influencing stress distribution were provided as a random input variable and the resulting probabilistic variation of maximum peel and shear stresses were studied. It was found that the adhesive modulus and bond line thickness had significant influence on the maximum stress variation. While the adherend thickness had a major influence, the effect of variation in longitudinal and shear modulus on the stresses was found to be little. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of characterizing global sensitivity indices of structural response when system uncertainties are represented using probabilistic and (or) non-probabilistic modeling frameworks (which include intervals, convex functions, and fuzzy variables) is considered. These indices are characterized in terms of distance measures between a fiducial model in which uncertainties in all the pertinent variables are taken into account and a family of hypothetical models in which uncertainty in one or more selected variables are suppressed. The distance measures considered include various probability distance measures (Hellinger,l(2), and the Kantorovich metrics, and the Kullback-Leibler divergence) and Hausdorff distance measure as applied to intervals and fuzzy variables. Illustrations include studies on an uncertainly parametered building frame carrying uncertain loads. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems determined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the active hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of polycrystalline metals under complex loading conditions. The influence of the material property parameters on size and shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the proposed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Compared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler in mathematical treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The National Oceanic and Atmospheric Administration’s Biogeography Branch has conducted surveys of reef fish in the Caribbean since 1999. Surveys were initially undertaken to identify essential fish habitat, but later were used to characterize and monitor reef fish populations and benthic communities over time. The Branch’s goals are to develop knowledge and products on the distribution and ecology of living marine resources and provide resource managers, scientists and the public with an improved ecosystem basis for making decisions. The Biogeography Branch monitors reef fishes and benthic communities in three study areas: (1) St. John, USVI, (2) Buck Island, St. Croix, USVI, and (3) La Parguera, Puerto Rico. In addition, the Branch has characterized the reef fish and benthic communities in the Flower Garden Banks National Marine Sanctuary, Gray’s Reef National Marine Sanctuary and around the island of Vieques, Puerto Rico. Reef fish data are collected using a stratified random sampling design and stringent measurement protocols. Over time, the sampling design has changed in order to meet different management objectives (i.e. identification of essential fish habitat vs. monitoring), but the designs have always remained: • Probabilistic – to allow inferences to a larger targeted population, • Objective – to satisfy management objectives, and • Stratified – to reduce sampling costs and obtain population estimates for strata. There are two aspects of the sampling design which are now under consideration and are the focus of this report: first, the application of a sample frame, identified as a set of points or grid elements from which a sample is selected; and second, the application of subsampling in a two-stage sampling design. To evaluate these considerations, the pros and cons of implementing a sampling frame and subsampling are discussed. Particular attention is paid to the impacts of each design on accuracy (bias), feasibility and sampling cost (precision). Further, this report presents an analysis of data to determine the optimal number of subsamples to collect if subsampling were used. (PDF contains 19 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.

The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.