990 resultados para Pre - fabricated wall
Resumo:
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Digital image
Resumo:
Springsure Creek Coal (SCC) intends to develop a coal mine using the long wall mining process under grain farming land near Emerald in Central Queensland (CQ). While this technology will result in some subsidence of the land surface, SCC wishes to maintain productivity of the grain cropping land in the precinct after coal mining. However, the impact of the surface subsidence resulting from that mining process on productivity of cropping land in any Australian landscape is currently unclear. A research protocol to investigate the impacts of subsidence on grain productivity for when the SCC project becomes operational is proposed. The protocol has wider application for other similar mining projects throughout the country. A copy of the full report is accessible on www.aginstitute.com.au.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
Epitaxial bilayered thin films consisting of La0.6Sr0.4MnO3 (LSMO) and 0.7Pb(Mg1/3Nb2/3)O3â0.3PbTiO3 (PMN-PT) layers of relatively different thicknesses were fabricated on LaNiO3 coated LaAlO3 (100) single crystal substrates by pulsed laser ablation technique. The crystallinity, ferroelectric, ferromagnetic, and magnetodielectric properties have been studied for all the bilayered heterostructures. Their microstructural analysis suggested possible StranskiâKrastanov type of growth mechanism in the present case. Ferroelectric and ferromagnetic characteristics of these bilayered heterostructures over a wide range of temperatures confirmed their biferroic nature. The magnetization and ferroelectric polarization of the bilayered heterostructures were enhanced with increasing PMN-PT layer thickness owing to the effect of lattice strain. In addition, evolution of the ferroelectric and ferromagnetic properties of these heterostructures with changing thicknesses of the PMN-PT and LSMO layers indicated possible influence of several interfacial effects such as space charge, depolarization field, domain wall pinning, and spin disorder on the observed properties. Dielectric properties of these heterostructures studied over a wide range of temperatures under different magnetic field strengths suggested a possible role of elastic strain mediated magnetoelectric coupling behind the observed magnetodielectric effect in addition to the influence of rearrangement of the interfacial charge carriers under an applied magnetic field.
Resumo:
Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.
Resumo:
In 2010 a group of teacher educators from four universities, experienced in rural and remote education, formed the Tertiary Educators Rural, Regional and Remote Network (TERRR Network). The collaborative goal was to improve the quality of graduates taking appointments beyond the metropolitan areas of Western Australia. The TERRR Network developed a research project to improve the capacity of universities to prepare teachers for employment in rural and remote locations. A range of outcomes emerged from the project, including: 1) the development of seven rural and remote-oriented curricula modules linked to the Australian Professional Standards for Teachers; 2) a cross-institutional field experience, and; 3) the development of a community of practice involving the Department of Education, universities and schools to address the logistical implications of placing pre-service students in rural and remote locations. This paper reports on the five phases of the project design, with a focus on learning in the field and concludes with reflections on the collaborative process used by the four universities in order to ensure that research evidence informs future policy and program development.
Resumo:
This paper reports on outcomes of Phases One and Two of the ALTC Competitive Research and Development Project "Developing Strategies at the Pre-Service Level to Address Critical Teacher Attraction and Retention Issues in Australian Rural, Regional and Remote Schools." This project funded over two years aims to strengthen the capacity and credibility of universities to prepare rural, regional and remote educators, similar to the capacity and credibility that has been created in preparing Australia's rural, regional and remote health workers. There is a strong recognition of the fundamental importance of quality teaching experiences rural, regional and remote schools and throughout this project over 200 pre-service teachers have participated in a curriculum module/object and completed a survey that encourages them to consider teaching in regional Western Australia. The project has mapped current Western Australian rural, regional and remote pre-service teacher education curriculum and field experience model. This mapping completed a comparison of national information with the identification of rural, regional and remote education curriculum and/or field experience models used nationally and internationally. In particular results from Phase One and Two will be presented reporting on the findings of the first year of the project.
Resumo:
Teacher education in Australia has a rich history of evolution from apprenticeships to university education. In this chapter the teacher education internship is examined. More specifically, the chapter outlines the Western Australian Combined Universities Training School (WACUTS) project, with its focus on reducing the gap between theory and practice through a collaborative and reflective approach. The successes and challenges faced in the first six months of implementation are presented
Resumo:
This paper reports on the outcomes of a two year ALTC Competitive Research and Development Project that aimed to "Develop Strategies at the Pre-Service Level to Address Critical Teacher Attraction and Retention Issues in Australian Rural, Regional and Remote Schools". As well as developing a ‘training framework’ and teaching guides to increase the capacity and credibility of four universities to prepare educators who might venture out of the metropolitan area to teach, data were gathered from pre-service and graduate teachers to analyse regional resilience. It was found that there was a strong likelihood to participate in a regional practicum and stay in a non-metropolitan community once they graduated from university if they had a positive attitude to regional Western Australia either through a family connection or previous experience. Recommendations from this study emphasise the importance of having pre-service students participate in positive regional experiences early in their university study.
Resumo:
The quality of an online university degree is paramount to the student, the reputation of the university and most importantly, the profession that will be entered. At the School of Education within Curtin University, we aim to ensure that students within rural and remote areas are provided with high quality degrees equal to their city counterparts who access face-to-face classes on campus.In 2010, the School of Education moved to flexible delivery of a fully online Bachelor of Education degree for their rural students. In previous years, the degree had been delivered in physical locations around the state. Although this served the purpose for the time, it restricted the degree to only those rural students who were able to access the physical campus. The new model in 2010 allows access for students in any rural area who have a computer and an internet connection, regardless of their geographical location. As a result enrolments have seen a positive increase in new students. Academic staff had previously used an asynchronous environment to deliver learning modules housed within a learning management system (LMS). To enhance the learning environment and to provide high quality learning experiences to students learning at a distance, the adoption of synchronous software was introduced. This software is a real-time virtual classroom environment that allows for communication through Voice over Internet Protocol (VoIP) and videoconferencing, along with a large number of collaboration tools to engage learners. This research paper reports on the professional development of academic staff to integrate a live e-learning solution into their current LMS environment. It involved professional development, including technical orientation for teaching staff and course participants simultaneously. Further, pedagogical innovations were offered to engage the students in a collaborative learning environment. Data were collected from academic staff through semi-structured interviews and participant observation. The findings discuss the perceived value of the technology, problems encountered and solutions sought.