974 resultados para Plasma-exposed surfaces
Resumo:
Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.
Resumo:
Inhibition of carotid body (CB) function is the main mechanism involved in the attenuation of respiratory drive observed during hyperoxia However, only a few studies at 5 0 atmospheres absolutes (ATA) have analyzed carotid body structure or function in hyperbaric oxygenation (HBO(2)) situations We hypothesized that rats will present CB structural alterations when exposed to different lower hyperbaric oxygen doses enough to alter their chemosensory response to hypoxia Methods - Twenty-one adult male Wistar rats, divided into three groups, were maintained in room air or exposed to O(2) at 2 4 or 3 0 ATA for six hours Histological, ultrastructural and immunohistochemical analyses for neuronal nitric oxide synthase (nNOS) and F2-isoprostane were performed in the excised CBs Results - Histological analyses revealed signs of intracellular edema in animals exposed to both conditions, but this was more marked in the 3 0 ATA group, which showed ultrastructural alterations at the mitochondrial level There was a significant increase in the volume density of intraglomic-congested capillaries in the 3 0 ATA group associated with an arteriolar vasoconstriction In the 2 4 ATA group, there was a relative increase of glomic light cells and a decrease of glomic progenitor cells Additionally, there was a stronger immunoreactivity for F2-isoprostane in the 3 0 ATA O(2)-exposed carotid bodies The glomic cells stained positive for nNOS, but no difference was observed between the groups Our results show that high 02 exposures may induce structural alterations in glomic cells with signs of lipid peroxidation We further suggest that deviation of blood flow toward intraglomic capillaries occurs in hyperbaric hyperoxia
Resumo:
Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions` antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. (C) 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;107:1168-1172)
Resumo:
Objectives Microsatellite instability (MSI) induction by alkylating agent-based chemotherapy (ACHT) may underlie both tumor resistance to chemotherapy and secondary leukaemias in cancer patients. We investigated if ACHT could induce MSI in tumor-derived plasma-circulating DNA (pfDNA) and in normal peripheral blood mononuclear (PBMN) cells. We also evaluated if amifostine could interfere with this process in an in-vitro model. Methods MSI was determined in pfDNA, PBMN cells and urine cell-free DNA (ufDNA) of 33 breast cancer patients before and after ACHT. MCF-7 cells and PBMN from normal donors were exposed in vitro to melphalan, with or without amifostine. Results We observed at least one MSI event in PBMN cells, pfDNA or ufDNA of 87, 80 and 80% of patients, respectively. In vitro, melphalan induced MSI in both MCF-7 and normal PBMN cells. In PBMN cells, ACHT-induced MSI occurred together with a significant decrease in the expression of the DNA mismatch repair gene hMSH2. Amifostine decreased hMSH2 expression and also prevented MSI induction only in normal PBMN cells. Conclusions ACHT induced MSI in PBMN cells and in tumour-derived pfDNA. Because of its protective effect against ACHT induction of MSI in normal PBMN cells in vitro, amifostine may be a potential agent for preventing secondary leukaemias in patients exposed to ACHT.
Resumo:
In this study, we analyzed the effect of aerobic exercise training (AET) and of a single bout of exercise on plasma oxidative stress and on antioxidant defenses in type 2 diabetes mellitus (DM) and in healthy control subjects (C). DM and C did not differ regarding triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, and HOMA index at baseline and after AET. To measure the lag time for low-density lipoprotein (LDL) oxidation (LAG) and the maximal rate of conjugated diene formation (MCD), participants` plasma HDL(2) and HDL(3) were incubated with LDL from pooled healthy donors` plasma. In the presence of HDL(3), both LAG and MCD were similar in C and DM, but only in DM did AET improve LAG and reduce MCD. In the presence of HDL(2), the lower baseline LAG in DM equaled C after AET. MCD was unchanged in DM after AET, but was lower than C only after AET. Furthermore, after AET plasma thiobarbituric acid-reactive substances were reduced only in DM subjects. Despite not modifying the total plasma antioxidant status and serum paraoxonase-1 activity in both groups, AET lowered the plasma lipid peroxides, corrected the HDL(2), and improved the HDL(3) antioxidant efficiency in DM independent of the changes in blood glucose, insulin, and plasma HDL concentration and composition.
Resumo:
Background and Purpose-Plasma glutathione peroxidase (GPx-3) is a major antioxidant enzyme in plasma and the extracellular space that scavenges reactive oxygen species produced during normal metabolism or after oxidative insult. A deficiency of this enzyme increases extracellular oxidant stress, promotes platelet activation, and may promote oxidative posttranslational modification of fibrinogen. We recently identified a haplotype (H-2) in the GPx-3 gene promoter that increases the risk of arterial ischemic stroke among children and young adults. Methods-The aim of this study is to identify possible relationships between promoter haplotypes in the GPx-3 gene and cerebral venous thrombosis (CVT). We studied the GPx-3 gene promoter from 23 patients with CVT and 123 young controls (18 to 45 years) by single-stranded conformational polymorphism and sequencing analysis. Results-Over half of CVT patients (52.1%) were heterozygous (H1H2) or homozygous (H2H2) carriers of the H-2 haplotype compared with 12.2% of controls, yielding a more than 10-fold independent increase in the risk of CVT (OR=10.7; 95% CI, 2.70 to 42.36; P<0.0001). Among women, the interaction of the H2 haplotype with hormonal risk factors increased the OR of CVT to almost 70 (P<0.0001). Conclusions-These findings show that a novel GPx-3 promoter haplotype is a strong, independent risk factor for CVT. As we have previously shown that this haplotype is associated with a reduction in transcriptional activity, which compromises antioxidant activity and antithrombotic benefits of the enzyme, these results suggest that a deficiency of GPx-3 leads to a cerebral venous thrombophilic state.
Resumo:
The purpose of the present study was to evaluate the intra and interday reliability of surface electromyographic amplitude values of the scapular girdle muscles and upper limbs during 3 isometric closed kinetic chain exercises, involving upper limbs with the fixed distal segment extremity on stable base of support and on a Swiss ball (relatively unstable). Twenty healthy adults performed the exercises push-up, bench-press and wall-press with different effort levels (80% and 100% maximal load). Subjects performed three maximal voluntary contractions (MVC) in muscular testing position of each muscle to obtain a reference value for root mean square (RMS) normalization. Individuals were instructed to randomly perform three isometric contraction series, in which each exercise lasted 6 s with a 2-min resting-period between series and exercises. Intra and interday reliabilities were calculated through the intraclass correlation coefficient (ICC 2.1), standard error of the measurement (SEM). Results indicated an excellent intraday reliability of electromyographic amplitude values (ICC >= 0.75). The interday reliability of normalized RMS values ranged between good and excellent (ICC 0.52-0.98). Finally, it is suggested that the reliability of normalized electromyographic amplitude values of the analyzed muscles present better values during exercises on a stable surface. However, load levels used during the exercises do not seem to have any influence on variability levels, possibly because the loads were quite similar. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Experimental and clinical evidence shows that neutrophils play an important role in the mechanism of tissue injury in immune complex diseases through the generation of reactive oxygen species. In this study, we examined the influence of academic psychological stress in post-graduate students on the capacity of their blood neutrophils to release superoxide when stimulated by immune complexes bound to nonphagocytosable surfaces and investigated the modulatory effect of cortisol on this immune function. The tests were performed on the day before the final examination. The state-trait anxiety inventory questionnaire was used to examine whether this stressful event caused emotional distress. In our study, the psychological stress not only increased plasma cortisol concentration, but it also provoked a reduction in superoxide release by neutrophils. This decrease in superoxide release was accompanied by diminished mRNA expression for subunit p47(phox) of the phagocyte superoxide-generating nicotinamide adenine dinucleotide phosphate-oxidase. These inhibitory effects were also observed by in vitro exposure of neutrophils from control volunteers to 10(-7) M hydrocortisone, and could be prevented by the glucocorticoid receptor antagonist RU-486. These results show that in a situation of psychological stress, the increased levels of cortisol could inhibit superoxide release by neutrophils stimulated by IgG immune complexes bound to nonphagocytosable surfaces, which could attenuate the inflammatory state.
Resumo:
Background. Ischemia-reperfusion injury is believed to be a major cause of transferred skin flap failure. Cigarette smoking is known to be associated with endogenous antioxidant depletion, hypercoagulability, and cutaneous vasoconstriction. This investigation was carried out to study possible effects of pentoxyfilline or heparin on rat skin reperfusion injury under tobacco exposure. Materials and Methods. Thirty-six rats were randomized into two major groups: 18 were exposed to cigarette smoke during a 4 wk period prior to surgery; the remaining 18 underwent a sham smoking procedure. Each group was further divided into three equal subgroups: heparin, pentoxyfilline, and saline solution. One identical skin flap was raised in each animal. The vasculature of the flap was clamped for 3 h and reperfused for 5 min. A venous blood sample was obtained from the flap after reperfusion for serum malondialdehyde (MDA) and myeloperoxidase (MPO) analysis. Flap survival was assessed 7 d after the procedure. Results. The lipid peroxidation levels and flap necrosis were significantly higher in the cigarette-smoking group skin flaps. There was also a decrease of MPO activity in this group compared with the nonsmoking group. Heparin-treated rats had significantly lower MDA levels and showed the most viable percent area among smoking rats. Conclusions. These data suggest that heparin had a significant beneficial effect both on flap survival and on the lipid peroxidation reduction after smoke exposure in the rat axial-pattern skin flap subjected to ischemia and reperfusion injury. Pharmacologic therapy may represent an alternative way to counteract tobacco effects in flap surgery in emergency situations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: The duodenum and proximal jejunum are excluded after Roux-en-Y gastric bypass but these intestinal sites are where iron and zinc are most absorbed. Therefore, they are among the nutrients whose digestive and absorptive process can be impaired after surgery. The aim of the present study was to investigate the iron and zinc plasma response to a tolerance test before and after bariatric surgery. The study was performed at Sao Paulo University School of Medicine of Ribeirao Preto, Brazil. Methods: In a longitudinal paired study, 9 morbidly obese women (body mass index >= 40 kg/m(2)) underwent an iron and zinc tolerance test before and 3 months after surgery. The iron and zinc levels were determined at 0, 1, 2, 3, and 4 hours after a physiologic unique oral dose. The mineral concentrations in die plasma and 24-hour urine sample were assayed using an atomic absorption spectrophotometer. The anthropometric measurements and 3-day food record were also evaluated. A linear mixed model was used to compare the plasma concentration versus interval after the oral dose, before and after surgery. Results: The pre- and postoperative test results revealed a significantly lower plasma zinc response (P <.01) and a delayed response to iron intake after surgery. The total plasma iron concentration area, during the 4 hours, was not different after surgery (P >.05). The 24-hour urinary iron and zinc excretion did not differ between the pre- and postoperative phases. Conclusion: The present data showed a compromised response to the zinc tolerance test after gastric bypass surgery, suggesting an impaired absorption of zinc. More attention must be devoted to zinc nutritional status after surgery. (Surg Obes Relat Dis 2011;7:309-314.) (C) 2011 American Society for Metabolic and Bariatric Surgery. All rights reserved.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
Background and Aim: There were strong evidences that nitric oxide has capital importance in the progressive vasodilatation associated with varied circulatory shock forms, including systemic inflammatory response syndrome (SIRS), in patients undergoing cardiac surgeries for cardiopulmonary bypass (CPB). If CPB procedures, per se, are the inciting stimulus for inflammation, plasma nitrate/nitrite (NOx) excretion would be expected to be higher in these patients rather than in patients operated without CPB. In consequence, we hypothesized that increased levels of NOx would be predictive for vasoplegic syndrome. Methods: Thirty patients were assigned to three groups: Group 1-coronary artery bypass graft (CABG) roller pump CPB; Group 2-CABG centrifugal vortex pump CPB; and Group 3-heart valve surgery roller pump CPB. Sampling of venous blood for chemiluminescence plasma NOx dosage was achieved at the following time points: (1) before anesthesia induction; (2) after anesthesia induction; (3) before heparin infusion; (4) after heparin infusion; (5) CPB-30 minutes; (6) CPB-60 minutes; (7) before protamine infusion; (8) after protamine infusion; and (9) on return to the recovery area. Results: There were no intergroup differences regarding age and anesthetic regimen, and the number of arteries grafted was not different between the CABG groups. There were no NOx statistic differences, neither among the three groups of patients or among the surgery time. In addition, there was no correlation among NOx, lactate, and hemoglobin. Conclusions: Considering the inflammatory process intrinsic to CPB, this study reinforces the idea that plasma NOx is not useful as a biomarker of inflammatory response onset, which may or may not lead to SIRS and/or vasoplegic syndrome.
Resumo:
Mexiletine (MEX), hydroxymethylmexiletine (HMM) and P-hydroxy-mexiletine (PHM) were analyzed in rat plasma by LC-MS/MS. The plasma samples were prepared by liquid-liquid extraction using methyl-tert-butyl ether as extracting solvent. MEX, HMM, and PHM enantiomers were resolved on a Chiralpak (R) AD column. Validation of the method showed a relative standard deviation (precision) and relative errors (accuracy) of less than 15% for all analytes studied. Quantification limits were 0.5 ng ml(-1) for the MEX and 0.2 ng ml(-1) for the HMM and PHM enantiomers. The validated method was successfully applied to quantify the enantiomers of MEX and its metabolites in plasma samples of rats (n = 6) treated with a single oral dose of racemic MEX. Chirality 21:648-656, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Background/Aims: Transmethylation reactions and antioxidant metabolism are linked by transsulfuration, where homocysteine (Hcy) is converted to cysteine and reduced glutathione (GSH). Low protein intake can modulate the balance of this metabolic reaction. The aim of the present investigation was to study the effect of a low-protein diet on Hcy metabolism by monitoring levels of the amino acids involved in these pathways, and relating these levels to GSH levels and lipid peroxidation in rats. Methods: Sixteen rats were divided into 2 groups: control (C; standard AIN-93 diet, 20% protein) and low-protein diet (LPD; 8% protein diet). Rats in both groups were placed on the diets for 28 days. Results: A significant reduction (p < 0.05) in plasma Hcy concentration was found in LPD rats (0.16 +/- 0.04 mu mol/mg protein) versus C rats (0.25 +/- 0.03 mu mol/mg protein). Methionine levels were not significantly different between the 2 groups (C: 1.24 +/- 0.22 mu mol/mg protein; LPD: 1.03 +/- 0.27 mu mol/mg protein). A significant reduction (p ! 0.05) in hepatic GSH concentrations (C: 44 8 10 mu mol/mg protein; LPD: 17.4 +/- 4.3 mu mol/mg protein) was accompanied by an increase in lipid peroxidation (C: 0.13 +/- 0.01 mu mol/mg protein; LPD: 0.17 +/- 0.02 mu mol/mg protein; r = -0.62, p < 0.01). Conclusion: Hcy levels were reduced under a low-protein diet, resulting in modulated methyl balance and reduced GSH formation leading to increased susceptibility of hepatic cells to oxidative events. Copyright (C) 2009 S. Karger AG, Basel