486 resultados para Planets.
Resumo:
These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T_ eq up to 2,000 K, to those of a few Earth masses, with T _eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
Context. During the course of a large spectroscopic survey of X-ray active late-type stars in the solar neighbourhood, we discovered four lithium-rich stars packed within just a few degrees on the sky. Although located in a sky area rich in CO molecular regions and dark clouds, the Cepheus-Cassiopeia complex, these very young stars are projected several degrees away from clouds in front of an area void of interstellar matter. As such, they are very good "isolated" T Tauri star candidates. Aims. We present optical observations of these stars conducted with 1-2 m class telescopes. We acquired high-resolution optical spectra as well as photometric data allowing us to investigate in detail their nature and physical parameters with the aim of testing the "runaway" and "in-situ" formation scenarios. Their kinematical properties are also analyzed to investigate their possible connection to already known stellar kinematic groups. Methods. We use the cross-correlation technique and other tools developed by us to derive accurate radial and rotational velocities and perform an automatic spectral classification. The spectral subtraction technique is used to infer chromospheric activity level in the Hα line core and clean the spectra of photospheric lines before measuring the equivalent width of the lithium absorption line. Results. Both physical (lithium content, chromospheric, and coronal activities) and kinematical indicators show that all stars are very young, with ages probably in the range 10-30 Myr. In particular, the spectral energy distribution of TYC4496-780-1 displays a strong near-and far-infrared excess, typical of T Tauri stars still surrounded by an accretion disc. They also share the same Galactic motion, proving that they form a homogeneous moving group of stars with the same origin. Conclusions. The most plausible explanation of how these "isolated" T Tauri stars formed is the "in-situ" model, although accurate distances are needed to clarify their connection with the Cepheus-Cassiopeia complex. The discovery of this loose association of "isolated" T Tauri stars can help to shed light on atypical formation processes of stars and planets in low-mass clouds.
Resumo:
Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims. We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca II H & K lines, to others that hold noteworthy advantages. Methods. We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF ECHELLE package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R’_HK index. Results. We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.
Resumo:
We present the most recent results of our ongoing long-term high resolution spectroscopic study of nearby (d ≤ 25 pc) FGK stars which aim is to characterize the local properties of the Galaxy, in particular the star-formation history. A through analysis has been carried out for 253 cool stars in the solar neighborhood. This includes radial and rotational velocities determinations, chromospheric activity levels inference, kinematic analysis, and age estimates. This study does not only shed new light on the issue of stellar formation history but also contributes to any present or future mission aiming to detect extra-solar planets. Exo-planets are likely to be found orbiting around nearby cool stars and their detection and characterization is highly dependent on the precise determination of fundamental stellar parameters such as age, activity levels. Therefore, our study is of paramount importance to ensure the success of any such mission.
Resumo:
Since 2006, the European Near Earth Asteroids Research (EURONEAR) project has been contributing to the research of near-Earth asteroids (NEAs) within a European network. One of the main aims is the amelioration of the orbits of NEAs, and starting in 2014 February we focus on the recovery of one-opposition NEAs using the Isaac Newton Telescope (INT) in La Palma in override mode. Part of this NEA recovery project, since 2014 June EURONEAR serendipitously started to discover and secure the first NEAs from La Palma and using the INT, thanks to the teamwork including amateurs and students who promptly reduce the data, report discoveries and secure new objects recovered with the INT and few other telescopes from the EURONEAR network. Five NEAs were discovered with the INT, including 2014 LU14, 2014 NL52 (one very fast rotator), 2014 OL339 (the fourth known Earth quasi-satellite), 2014 SG143 (a quite large NEA), and 2014 VP. Another very fast moving NEA was discovered but was unfortunately lost due to lack of follow-up time. Additionally, another 14 NEA candidates were identified based on two models, all being rapidly followed-up using the INT and another 11 telescopes within the EURONEAR network. They include one object discovered by Pan-STARRS, two Mars crossers, two Hungarias, one Jupiter trojan, and other few inner main belt asteroids (MBAs). Using the INT and Sierra Nevada 1.5 m for photometry, then the Gran Telescopio de Canarias for spectroscopy, we derived the very rapid rotation of 2014 NL52, then its albedo, magnitude, size, and its spectral class. Based on the total sky coverage in dark conditions, we evaluate the actual survey discovery rate using 2-m class telescopes. One NEA is possible to be discovered randomly within minimum 2.8 deg2 and maximum 5.5 deg2. These findings update our past statistics, being based on double sky coverage and taking into account the recent increase in discovery.
Resumo:
For suitable illumination and observation conditions, sparkles may be observed in metallic coatings. The visibility of these sparkles depends critically on their intensity, and on the paint medium surrounding the metallic flakes. Based on previous perception studies from other disciplines, we derive equations for the threshold for sparkles to be visible. The resulting equations show how the visibility of sparkles varies with the luminosity and distance of the light source, the diameter of the metallic flakes, and the reflection properties of the paint medium. The predictions are confirmed by common observations on metallic sparkle. For example, under appropriate conditions even metallic flakes as small as 1 μm diameter may be visible as sparkle, whereas under intense spot light the finer grades of metallic coatings do not show sparkle. We show that in direct sunlight, dark coarse metallic coatings show sparkles that are brighter than the brightest stars and planets in the night sky. Finally, we give equations to predict the number of visually distinguishable flake intensities, depending on local conditions. These equations are confirmed by previous results. Several practical examples for applying the equations derived in this article are provided.
Resumo:
A vida que existe na Terra resulta de um conjunto de circunstâncias muito particulares e raras nas quais se inclui a presença da Lua. A Lua é o satélite natural da Terra e os dois planetas influenciam-se mutuamente. Apesar de ser um pequeno planeta a Lua é responsável por vários fenómenos terrestres como as marés que afetam a velocidade de rotação da Terra. O seu afastamento, apesar de lento é constante e provocará alterações nas condições do planeta que permitem sustentar a vida e afectará algumas espécies em particular.
Resumo:
The main subject of this dissertation is packaging, which is an inescapable product in our society nowadays. Every product we consume daily is generally protected and sheltered by a package that visually represents the product – the main feature of packaging. This research aims to assess the importance of packaging today as well as its role in the past, while searching for ways to improve its qualities as a design project. From the sustainability’s perspective, packaging is a factor that must be observed in dealing with its production, use and disposal and that is precisely the point of view that it is explored within this dissertation: packages’ ability of being sustainable and matching more ecological design practices. The main goal of this research is being able to take advantage of the package and its qualities as a selling means and at the same time make it a product that doesn’t harm our planet and the environment. Although packaging is targeted to match trade and economic issues, environmental factors have been addressed more incisively, as those are one of the biggest problems about this matter: the disposal of the package generates the accumulation of waste after the product is consumed. That being said, the challenge is to produce sustainable packaging and also to redefine the concept of packaging itself. Therefore this research intends to look for the link between packaging and sustainability and how that linkage can add value to the trade market and also to our planet’s health and well-being
Resumo:
We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (ΩTLE = 1/365 days) differs from that of our present-day Earth (PDE) (ΩPDE = 1/1 day). The middle atmosphere reaches a steady state a symptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [(Ox) ≈ (O3)]. At these altitudes, the lifetime of odd oxygen is ~16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ~19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %.
Resumo:
Are there planets beyond our solar system? What may appear quite plausible now had only been a hypothesis until about twenty years ago. The search for exoplanets is driven by the interest in the “habitable” ones among them. Could such planets one day in the far future provide resources or even shelter for humankind? Will we find one day a habitable planet that is even inhabited? These kinds of imaginative speculations drive public interest in the subject. Imagining alien intelligent life in the universe is not at all new. When Ted Peters called for establishing the field of “astrotheology,” he was certainly thinking less of historical precedents than of something analogous to the emerging field of astrobiology. Will astrotheology result in the decentering of humanity in cosmic dimensions? One could also conclude that we are alone, at least for all practical purposes.
Resumo:
Shipping list no.: 89-124-P.
Resumo:
Mode of access: Internet.
Resumo:
Signatures: A-D⁴ (16 leaves).