882 resultados para Piecewise linear differential systems
Resumo:
Whilst traditional optimisation techniques based on mathematical programming techniques are in common use, they suffer from their inability to explore the complexity of decision problems addressed using agricultural system models. In these models, the full decision space is usually very large while the solution space is characterized by many local optima. Methods to search such large decision spaces rely on effective sampling of the problem domain. Nevertheless, problem reduction based on insight into agronomic relations and farming practice is necessary to safeguard computational feasibility. Here, we present a global search approach based on an Evolutionary Algorithm (EA). We introduce a multi-objective evaluation technique within this EA framework, linking the optimisation procedure to the APSIM cropping systems model. The approach addresses the issue of system management when faced with a trade-off between economic and ecological consequences.
Resumo:
The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
We compare the Q parameter obtained from scalar, semi-analytical and full vector models for realistic transmission systems. One set of systems is operated in the linear regime, while another is using solitons at high peak power. We report in detail on the different results obtained for the same system using different models. Polarisation mode dispersion is also taken into account and a novel method to average Q parameters over several independent simulation runs is described. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We compare the Q parameter obtained from the semi-analytical model with scalar and vector models for two realistic transmission systems. First a linear system with a compensated dispersion map and second a soliton transmission system.
Resumo:
This thesis is devoted to the tribology at the head~to~tape interface of linear tape recording systems, OnStream ADRTM system being used as an experimental platform, Combining experimental characterisation with computer modelling, a comprehensive picture of the mechanisms involved in a tape recording system is drawn. The work is designed to isolate the mechanisms responsible for the physical spacing between head and tape with the aim of minimising spacing losses and errors and optimising signal output. Standard heads-used in ADR current products-and prototype heads- DLC and SPL coated and dummy heads built from a AI203-TiC and alternative single-phase ceramics intended to constitute the head tape-bearing surface-are tested in controlled environment for up to 500 hours (exceptionally 1000 hours), Evidences of wear on the standard head are mainly observable as a preferential wear of the TiC phase of the AI203-TiC ceramic, The TiC grains are believed to delaminate due to a fatigue wear mechanism, a hypothesis further confirmed via modelling, locating the maximum von Mises equivalent stress at a depth equivalent to the TiC recession (20 to 30 nm). Debris of TiC delaminated residues is moreover found trapped within the pole-tip recession, assumed therefore to provide three~body abrasive particles, thus increasing the pole-tip recession. Iron rich stain is found over the cycled standard head surface (preferentially over the pole-tip and to a lesser extent over the TiC grains) at any environment condition except high temperature/humidity, where mainly organic stain was apparent, Temperature (locally or globally) affects staining rate and aspect; stain transfer is generally promoted at high temperature. Humidity affects transfer rate and quantity; low humidity produces, thinner stains at higher rate. Stain generally targets preferentially head materials with high electrical conductivity, i.e. Permalloy and TiC. Stains are found to decrease the friction at the head-to-tape interface, delay the TiC recession hollow-out and act as a protective soft coating reducing the pole-tip recession. This is obviously at the expense of an additional spacing at the head-to-tape interface of the order of 20 nm. Two kinds of wear resistant coating are tested: diamond like carbon (DLC) and superprotective layer (SPL), 10 nm and 20 to 40 nm thick, respectively. DLC coating disappears within 100 hours due possibly to abrasive and fatigue wear. SPL coatings are generally more resistant, particularly at high temperature and low humidity, possibly in relation with stain transfer. 20 nm coatings are found to rely on the substrate wear behaviour whereas 40 nm coatings are found to rely on the adhesive strength at the coating/substrate interface. These observations seem to locate the wear-driving forces 40 nm below the surface, hence indicate that for coatings in the 10 nm thickness range-· i,e. compatible with high-density recording-the substrate resistance must be taken into account. Single-phase ceramic as candidate for wear-resistant tape-bearing surface are tested in form of full-contour dummy-heads. The absence of a second phase eliminates the preferential wear observed at the AI203-TiC surface; very low wear rates and no evidence of brittle fracture are observed.
Resumo:
It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time. © 2008 Springer Science+Business Media, LLC.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
Firstly, we numerically model a practical 20 Gb/s undersea configuration employing the Return-to-Zero Differential Phase Shift Keying data format. The modelling is completed using the Split-Step Fourier Method to solve the Generalised Nonlinear Schrdinger Equation. We optimise the dispersion map and per-channel launch power of these channels and investigate how the choice of pre/post compensation can influence the performance. After obtaining these optimal configurations, we investigate the Bit Error Rate estimation of these systems and we see that estimation based on Gaussian electrical current systems is appropriate for systems of this type, indicating quasi-linear behaviour. The introduction of narrower pulses due to the deployment of quasi-linear transmission decreases the tolerance to chromatic dispersion and intra-channel nonlinearity. We used tools from Mathematical Statistics to study the behaviour of these channels in order to develop new methods to estimate Bit Error Rate. In the final section, we consider the estimation of Eye Closure Penalty, a popular measure of signal distortion. Using a numerical example and assuming the symmetry of eye closure, we see that we can simply estimate Eye Closure Penalty using Gaussian statistics. We also see that the statistics of the logical ones dominates the statistics of the logical ones dominates the statistics of signal distortion in the case of Return-to-Zero On-Off Keying configurations.
Resumo:
In this paper we will demonstrate the improved BER performance of doubly differential phase shift keying in a coherent optical packet switching scenario while still retaining the benefits of high frequency offset tolerance. © OSA 2014.
Resumo:
We examine reduction of phase jitter by use of in-line Butterworth filters in soliton systems in the context of differential phase-shift-keying coding. We also demonstrate numerically that the use of a Butterworth filter in a return-to-zero differential phase-shift-keying system can reduce continuum background radiation.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006