813 resultados para Phosphorus-nutrition
Resumo:
Human activities have resulted in increased nutrient levels in many rivers all over Europe. Sustainable management of river basins demands an assessment of the causes and consequences of human alteration of nutrient flows, together with an evaluation of management options. In the context of an integrated and interdisciplinary environmental assessment (IEA) of nutrient flows, we present and discuss the application of the nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) to the Catalan river basin, La Tordera (north-east Spain), for the period 1996–2002. After a successful calibration and verification process (Nash-Sutcliffe efficiencies E=0.85 for phosphorus and E=0.86 for nitrogen), the application of the model MONERIS proved to be useful in estimating nutrient loads. Crucial for model calibration, in-stream retention was estimated to be about 50 % of nutrient emissions on an annual basis. Through this process, we identified the importance of point sources for phosphorus emissions (about 94% for 1996–2002), and diffuse sources, especially inputs via groundwater, for nitrogen emissions (about 31% for 1996–2002). Despite hurdles related to model structure, observed loads, and input data encountered during the modelling process, MONERIS provided a good representation of the major interannual and spatial patterns in nutrient emissions. An analysis of the model uncertainty and sensitivity to input data indicates that the model MONERIS, even in data-starved Mediterranean catchments, may be profitably used by water managers for evaluating quantitative nutrient emission scenarios for the purpose of managing river basins. As an example of scenario modelling, an analysis of the changes in nutrient emissions through two different future scenarios allowed the identification of a set of relevant measures to reduce nutrient loads.
Resumo:
The aim of the present work was to develop and optimize a method for determination of bioavailable phosphorus in samples of feces and fish feed using ultrasound extraction and subsequent quantification by visible spectrophotometry. Using as extractor solution HNO3 0.50 mol L-1, the great conditions of extraction established were: sample mass - 100 mg, samples granulometry - < 60 µm, sonification time - five cycles of 40 s and ultrasound potency - 136 W. The proposed method was applied in studies of digestibility of this nutrient in different feeds used in diets of juvenile of Nile tilapia.
Resumo:
The aim of this study was to identify, with the use of 31P NMR spectroscopy, organic P species in humic acids (HA) in samples from Oxisol cultivated in chronosequence with sugar cane, pasture and Cerrado. The main forms of P-type found were orthophosphate, monoester-P (phosphate sugars) and P-diester (orthophosphate). The 31P NMR technique proved capable of identifying changes in the areas studied as a function of sugar cane burning time. In areas with 1 and 5 years of burnt cane, a decrease in recalcitrant organic P in humic acids indicated the need for use of P-humic substances for plant nutrition.
LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS
Resumo:
The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.
Resumo:
The benefit promoted by ectomycorrhizal depends on the interaction between symbionts and phosphorus (P) contents. Phosphorus effect on ectomycorrhizal formation and the effectiveness of these in promoting plant growth for fungal pre-selection were assessed under in vitro conditions. For P effect evaluation, Eucalyptus urophylla seedlings inoculated with four Pisolithus sp. isolates and others non-inoculated were grown on substrate containing 0.87, 1.16 and 1.72 mg P per plant. For evaluation of effectiveness and fungal pre-selection, other 30 isolates of Pisolithus sp., Pisolithus microcarpus ITA06 isolate, Amanita muscaria AM16 isolate, Scleroderma areolatum SC129 isolate were studied. D26 isolate promoted the highest plant heights for the three P doses, D51 at the lower dose and D72 at the intermediate dose. P doses did not influenced shoot fresh weight and fungal colonization. In the pre-selection of fungi, 14 isolates of Pisolithus sp., P. microcarpus ITA06 isolate and S. areolatum SC129isolate increased plant height and fresh weight. D82 isolate of Pisolithus sp. had effect singly on plant height while D17 and D58 on fresh weight. Of these, only D15, D17, D58 and ITA06 had typical ectomycorrhizae. The cultivation in vitro has shown adequate for pre-selection of ectomycorrhizal fungi. Colonization and benefits depend on species and isolate. D15, D17 and D58 of Pisolithus sp. and P. microcarpus isolate ITA06 are the most promising for nursery studies.