705 resultados para Phantom Omni


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To compare a customized imaging guide and a standard film holder for obtaining optimally projected intraoral radiographs of dental implants.Material and methods: Intraoral radiographs of four screw-type implants with different inclination placed in an upper or lower dental phantom model were recorded by 32 groups of examiners after a short instruction in the use of the RB-RB/LB-LB mnemonic rule. Half of the examiners recorded the images using a standard film holder and the other half used a customized imaging guide. Each radiograph was assessed under blinded conditions with regard to rendering of the implant threads and was assigned to one of four quality categories: (1) perfect, (2) not perfect, but clinically acceptable, (3) not acceptable, and (4) hopeless.Results: For the upper jaw, the same number of exposures per implant were made to achieve an acceptable image (P = 0.86) by the standard film holder method (median = 2) and the imaging guide method (median = 2). For the lower jaw, medians for the imaging guide method and the film holder method were 1 and 2, respectively (P = 0.004). For the imaging guide method, the first exposure was rated as perfect/acceptable in 62% of the cases and for the film holder method in 41% of the cases (P = 0.013). After <= 2 exposures, 78% (imaging guide method) and 69% (film holder method) of the implant images were perfect/acceptable (P=0.23). The implant inclination did not have a major influence on the outcomes.Conclusion: Perfect or acceptable images were achieved after two exposures with the same frequency either using a customized imaging guide method or a standard film holder method. However, the use of a customized imaging guide method was overall significantly superior to a standard film holder method in terms of obtaining perfect or acceptable images with only one exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vivo determination of the incorporated activity of Tc-99(m)-MDP (methylene diphosphonate) in bone tissue by means of a scintillation camera requires calibration of the device. This can be carried out by using an anthropomorphic physical phantom. In this work, a new human tibia and fibula phantom is presented to estimate incorporated activity to bone tissue. A tibia and a fibula, taken from a real skeleton, were used to develop the phantom. Images were acquired of the legs of 65 volunteers at different times of incorporation (minimum of 120 and maximum of 2500 min after injection) and count rates of such a region were obtained by means of a computer program. The calibration factor obtained was then used to assess the activity in the two bents. The final result is 0.4995 kBq per cpm for technetium. The proposed method can be used both for radiation protection purposes and for metabolism studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations. In order to compute the rate of formation of massive objects we employ the spherical collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift (number counts).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo do estudo foi avaliar a deposição de óxido de alumínio no campo operatório do cirurgião-dentista durante a utilização do sistema de abrasão a ar em consultório odontológico, bem como a efetividade da sucção de alta potência na captação desse pó. Por meio de um dispositivo para a coleta das partículas nos locais correspondentes às posições e distâncias de trabalho do profissional, dentes artificiais foram abrasionados. O sistema de sucção empregado para aspiração das partículas foi o de alta potência com sugador de saliva convencional e sugador com abertura ampliada por funil. A mensuração das partículas foi determinada pela quantidade em massa de óxido de alumínio depositada em placas de Petri. Os resultados obtidos por meio de estatística descritiva gráfica revelaram que a maior quantidade de pó se encontrava a 20 cm do operador e na posição de trabalho 9h, quando foi utilizado o sugador de saliva convencional. Uma vez comprovado que a sucção não é totalmente eficiente na aspiração do pó de óxido de alumínio, reforça-se a importância da proteção individual apropriada para o emprego seguro do sistema de abrasão a ar para pacientes e, principalmente, para os profissionais que trabalham com este tipo de tecnologia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoluminescent dosimeters were used to measure radiation doses at craniofacial sites in a tissue-equivalent phantom during film-based multidirectional tomography with the Tomax Ultrascan (Incubation Industries, Ivyland, Pa.) and during computed tomography with the Elscint Excel 2400 (Elscint Corp., Tel Aviv, Israel). Mean absorbed doses for presurgical mandibular and maxillary canine and molar implant assessments were converted to equivalent doses, which were then multipied by published weighting factors and summed to give effective doses. The computed tomgraphy device consistently delivered higher doses than the Tomax Ultrascan to all anatomic locations; the differences were most pronounced when only one or two implant sites were evaluated. The reasons for the dose disparities are considered both anatomically and procedurally. A survey of examination cost revealed film-based multidirectional tomography to be less expensive than computed tomography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As it follows from the classical analysis, the typical final state of a dark energy universe where a dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a number of dark energy universes (including scalar phantom and effective phantom theories as well as specific quintessence models) we demonstrate that quantum effects play the dominant role near a big rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to the transient character of the phantom evolution stage. Some examples of cosmological evolution for a negative, time-dependent equation of state are also considered with the same conclusions. The application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics is briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: The purpose of this study was to compare the effectiveness of a high-volume evacuation and a conventional intraoral suction system and aspirating tips for capturing aluminum oxide particles during use of an air-abrasion device. Methods: A phantom head was fixed at the dental chair head with secured a metallic device with 5 horizontal shafts, corresponding to operator's clockrelated working positions, and one vertical shaft to simulate the operator's nasal cavity. Petri plates were fixed to the shafts at distances of 20, 40 and 60 cm from the center of the oral cavity of the phantom head to collect the aluminum oxide particles spread over during air abrasion. The dust was aspirated with two types of suction tips used with both suction systems: a conventional saliva ejector and a saliva ejector customized by the adaptation of a 55-mm-diameter funnel. Results: The amount of particles showed that the greatest abrasive particle deposition occurred at a distance of 20 cm from the center of the oral cavity of the phantom head at 9 o'clock operatory position with the conventional saliva ejector attached to high-volume evacuation system. Conclusions: The greatest deposition of aluminum oxide particles occurred at the shortest distance between the operator and the center of the oral cavity, while using the high-volume evacuation system associated to the conventional suction tip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although dynamic and stretching exercises have been widely investigated, there is little information about warm up performed by tag games. Thus, the purpose of the present study was to verify the acute effect of dynamic exercises compared to a tag game warm up on agility and vertical jump in children. 25 boys and 24 girls participated in this study and performed the agility and vertical jump tests after warm up based on dynamic exercises or as a tag game lasting 10 min each in two different days randomly. Dynamic exercises warm up consisted in a run lasting 2.5 min followed by 2 series of 8 dynamic exercises lasting 10 seconds each interspersed with 20s of light run to recovery. Tag game warm up was performed by a tag game with two variations lasting 5 min each. The first variation there was a single cather, which aimed to get the other participants by touching hands. In the second part of the game, the rules were the same except that the participant that was caught had to help the catcher forming a team of catchers. Warm up intensity was monitored by OMNI perceived exertion scale. ANOVA 2x2 for repeated measures (Warm up x Sex) demonstrated no significant differences between dynamic exercises and tag game for agility and vertical jump (P>0.05) for boys and girls. Perceived exertion was significantly higher in tag game compared to dynamic exercises on girls (P<0.05). Both warm up models showed similar acute effects on agility and vertical jump in children. © Faculty of Education. University of Alicante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obtaining a semi-automatic quantification of pathologies found in the lung, through images of high resolution computed tomography (HRCT), is of great importance to aid in medical diagnosis. Paraccocidioidomycosis (PCM) is a systemic disease that affects the lung and even after effective treatment leaves sequels such as pulmonary fibrosis and emphysema. It is very important to the area of tropical diseases that the lung injury be quantified more accurately. In this stud, we propose the development of algorithms in computational environment Matlab® able to objectively quantify lung diseases such as fibrosis and emphysema. The program consists in selecting the region of interest (ROI), and through the use of density masks and filters, obtaining the lesion area quantification in relation to the healthy area of the lung. The proposed method was tested on 15 exams of HRCT of patients with confirmed PCM. To prove the validity and effectiveness of the method, we used a virtual phantom, also developed in this research. © 2013 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The daily-to-day of medical practice is marked by a constant search for an accurate diagnosis and therapeutic assessment. For this purpose the doctor serves up a wide variety of imaging techniques, however, the methods using ionizing radiation still the most widely used because it is considered cheaper and above all very efficient when used with control and quality. The optimization of the risk-benefit ratio is considered a major breakthrough in relation to conventional radiology, though this is not the reality of computing and digital radiology, where Brazil has not established standards and protocols for this purpose. This work aims to optimize computational chest radiographs (anterior-posterior projection-AP). To achieve this objective were used a homogeneous phantoms that simulate the characteristics of absorption and scattering of radiation close to the chest of a patient standard. Another factor studied was the subjective evaluation of image quality, carried out by visual grading assessment (VGA) by specialists in radiology, using an anthropomorphic phantom to identify the best image for a particular pathology (fracture or pneumonia). Quantifying the corresponding images indicated by the radiologist was performed from the quantification of physical parameters (Detective Quantum Efficiency - DQE, Modulation Transfer Function - MTF and Noise Power Spectrum - NPS) using the software MatLab®. © 2013 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)