424 resultados para Phagocytosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microglia are the resident immune cells of the central nervous system (CNS) and play an important role in innate immune defense as well as tissue homeostasis. Chronic microglial reactivity, microgliosis, is a general hallmark of inflammatory and degenerative diseases that affect the CNS, including the retina. There is increasing evidence that chronic microgliosis is more than just a bystander effect, but rather actively contributes to progression of degeneration through processes such as toxic nitric oxide (NO) production and even phagocytosis of stressed but viable photoreceptors. Therefore immunmodulation of microglia presents a possible therapeutic strategy for retinal degenerations. Notably, the expression of the mitochondrial translocator protein 18 (κDa) (TSPO) is highly elevated in reactive microglia as seen in several neuroinflammatory diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Therefore it is used as a gliosis biomarker in the brain. Moreover TSPO ligands show potent effects in resolving neuroinflammatory brain disorders. However, TSPO expression in the eye had not been investigated before. Further, it was unknown whether TSPO ligands’ potent immunomodulatory effects could be used to treat retinal degenerations. To fill this gap, the study aimed to analyze whether TSPO is also a potential biomarker for degenerative processes in the retina. Moreover the thesis attempted to determine whether a specific TSPO ligand, XBD173, might modulate microglial reactivity and is a potent therapeutic, to treat retinal degenerative diseases. The findings revealed that TSPO is strongly upregulated in microglial cells of retinoschisin-deficient (RS1-/y) mice, a model of inherited retinal degeneration and in a murine light damage model. A co-localization of TSPO and microglia was furthermore detectable in human retinal sections, indicating a potential role for TSPO as a biomarker for retinal degenerations. In vitro assays showed that the TSPO ligand XBD173 effectively inhibited features of microglial activation such as morphological transformation into reactive phagocytes and enhanced expression of pro-inflammatory cytokines. XBD173 also reduced microglial migration and proliferation and reduced their neurotoxic potential on photoreceptor cells. In two independent mouse models of light-induced retinal degeneration, the treatment with XBD173 reduced accumulation of amoeboid, reactive microglia in the outer retina and attenuated degenerative processes, indicated by a nearly preserved photoreceptor layer. A further question addressed in this thesis was whether minocycline, an antibiotic with additional anti-inflammatory properties is able to reduce microglial neurotoxicity and to protect the retina from degeneration. Minocycline administration dampened microglial pro-inflammatory gene expression, NO production and neurotoxicity on photoreceptors. Interestingly, in addition to its immunomodulatory effect, minocycline also increased the viability of photoreceptors in a direct manner. In the light damage model, minocycline administration counter-acted microglial activation and blocked retinal degeneration. Taken together these results identified TSPO as a biomarker for microglial reactivity and as therapeutic target in the retina. Targeting TSPO with XBD173 was able to reverse microglial reactivity and could prevent degenerative processes in the retina. In addition, the study showed that the antibiotic minocycline effectively counter-regulates microgliosis and light-induced retinal degeneration. Considering that microgliosis is a major contributing factor for retinal degenerative disorders, this thesis supports the concept of a microglia-directed therapy to treat retinal degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection.