861 resultados para Periodic solutions
Resumo:
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.
Resumo:
La prévalence du diabète peut être estimée entre 20 et 30% parmi les patients en hôpital aigu. Il a été démontré que l'hyperglycémie, même modérée, est associée à une augmentation de la morbi-mortalité hospitalière, tandis que le contrôle glycémique efficace a un impact favorable sur celle-ci. La prise en charge de l'hyperglycémie demeure pourtant largement inefficace hors des soins intensifs, en raison de la persistance d'une pratique inadaptée. Nous développons actuellement un projet de soins destiné à faire changer les pratiques. Pour un contrôle glycémique efficace, une formation des soignants à une gestion basée sur le concept de couverture des besoins en insuline du patient est nécessaire. La démarche doit être intégrée à une approche de type systémique, prenant en compte le contexte dans lequel les soignants évoluent. The hospital inpatient prevalence of diabetes mellitus can be estimated between 20 and 30%. Even moderate hyperglycemia is associated with increased morbidity and mortality in the acute care setting, whereas efficient glycemic control has been shown to improve both of them significantly. Glycemic control however remains largely inefficient outside of the intensive care unit due to the persistance of an inadequate glycemic management practice. We are currently developing a clinical care project aimed at changing this practice. For an efficient glycemic control, a training programme for health care professionals based on the concept of covering the insulin needs of the patient is mandatory. This programme needs to be integrated in a systemic approach, which takes the professionals' context in account.
Resumo:
We study the Fréedericksz transition in a twist geometry under the effect of a periodic modulation of the magnitude of the applied magnetic field. We find a shift of the effective instability point and a time-periodic state with anomalously large orientational fluctuations. This time-periodic state occurs below threshold and it is accompanied by a dynamically stabilized spatial pattern. Beyond the instability the emergence of a transient pattern can be significantly delayed by a fast modulation, allowing the observation of pattern selection by slowing down the reorientational dynamics.
Resumo:
The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.
Resumo:
The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.
Resumo:
We calculate the effective diffusion coefficient in convective flows which are well described by one spatial mode. We use an expansion in the distance from onset and homogenization methods to obtain an explicit expression for the transport coefficient. We find that spatially periodic fluid flow enhances the molecular diffusion D by a term proportional to D-1. This enhancement should be easy to observe in experiments, since D is a small number.
Resumo:
The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.
Resumo:
Conferència impartida a l'Accademia di Belle Arti di Bologna en motiu de de les jornades "Atossico incisione e la sua introduzione in istruzione superiore", del 25 al 27 de gener del 2011 a Bologna
Resumo:
Steady state viscosity and thixotropy of hydrophobically modified hydroxyethyl cellulose HMHEC and nonassociative cellulose water solutions are studied. Although all the samples are shear thinning, only the HMHEC is thixotropic, since the migration of hydrophobes to micelles is controlled by diffusion. The Cross model fits steady state curves. The Mewis model, a phenomenological model that proposes that the rate of change of viscosity when the shear rate is suddenly changed is related to the difference between the steady state and current values of viscosity raised to an exponent, fits structure construction experiments when the exponent, n, is estimated to be around 2. The Newtonian assumption used by Mewis cannot be used here, however. This seems to be related to the fact that the thickening is due to bridged micelle formation, which is a slow process, and also to topological constraints and entanglements, which are rapid processes. The kinetic parameter was redefined to kn in order to make it independent of initial conditions. So, kn depends only on how the shear affects the structure. kn reaches a plateau at shear rates too low to produce structure destruction and decreases at higher shear rates.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Characterization of slope failures is complicated, because the factors affecting slope stability can be difficult to discern and measure, particularly soil shear strength parameters. While in the past extensive research has been conducted on slope stability investigations and analysis, this research consists of field investigations addressing both the characterization and reinforcement of such slope failures. The current research focuses on applying an infrequently-used testing technique comprised of the Borehole Shear Test (BST). This in-situ test rapidly provides effective (i.e., drained) shear strength parameter values of soil. Using the BST device, fifteen Iowa slopes (fourteen failures and one proposed slope) were investigated and documented. Particular attention was paid to highly weathered shale and glacial till soil deposits, which have both been associated with slope failures in the southern Iowa drift region. Conventional laboratory tests including direct shear tests, triaxial compression tests, and ring shear tests were also performed on undisturbed and reconstituted soil samples to supplement BST results. The shear strength measurements were incorporated into complete evaluations of slope stability using both limit equilibrium and probabilistic analyses. The research methods and findings of these investigations are summarized in Volume 1 of this report. Research details of the independent characterization and reinforcement investigations are provided in Volumes 2 and 3, respectively. Combined, the field investigations offer guidance on identifying the factors that affect slope stability at a particular location and also on designing slope reinforcement using pile elements for cases where remedial measures are necessary. The research findings are expected to benefit civil and geotechnical engineers of government transportation agencies, consultants, and contractors dealing with slope stability, slope remediation, and geotechnical testing in Iowa.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. While in the past extensive research has been conducted on slope stability investigations and analysis, this current research study consists of field investigations addressing both the characterization and reinforcement of such slope failures. While Volume I summarizes the research methods and findings of this study, Volume II provides procedural details for incorporating an infrequently-used testing technique, borehole shear tests, into practice. Fifteen slopes along Iowa highways were investigated, including thirteen slides (failed slopes), one unfailed slope, and one proposed embankment slope (the Sugar Creek Project). The slopes are mainly comprised of either clay shale or glacial till, and are generally gentle and of small scale, with slope angle ranging from 11 deg to 23 deg and height ranging from 6 to 23 m. Extensive field investigations and laboratory tests were performed for each slope. Field investigations included survey of slope geometry, borehole drilling, soil sampling, in-situ Borehole Shear Testing (BST) and ground water table measurement. Laboratory investigations mainly comprised of ring shear tests, soil basic property tests (grain size analysis and Atterberg limits test), mineralogy analyses, soil classifications, and natural water contents and density measurements on the representative soil samples from each slope. Extensive direct shear tests and a few triaxial compression tests and unconfined compression tests were also performed on undisturbed soil samples for the Sugar Creek Project. Based on the results of field and lab investigations, slope stability analysis was performed on each of the slopes to determine the possible factors resulting in the slope failures or to evaluate the potential slope instabilities using limit equilibrium methods. Deterministic slope analyses were performed for all the slopes. Probabilistic slope analysis and sensitivity study were also performed for the slope of the Sugar Creek Project. Results indicate that while the in-situ test rapidly provides effective shear strength parameters of soils, some training may be required for effective and appropriate use of the BST. Also, it is primarily intended to test cohesive soils and can produce erroneous results in gravelly soils. Additionally, the quality of boreholes affects test results, and disturbance to borehole walls should be minimized before test performance. A final limitation of widespread borehole shear testing may be its limited availability, as only about four to six test devices are currently being used in Iowa. Based on the data gathered in the field testing, reinforcement investigations are continued in Volume III.