992 resultados para Performance de fundos imobiliários
Measuring neighbourhood sustainability performance: an indexing model for Gold Coast City, Australia
Resumo:
The aim of this research is to develop an indexing model to evaluate sutainability performance of urban settings, in order to assess environmental impacts of urban development and to provide planning agencies an indexing model as a decision support tool to be used in curbing negative impacts of urban development. Indicator-based sustainability assessment is embraced as the method. Neigbourhood-level urban form and transport related indicators are derived from the literature by conducting a content analysis and finalised via a focus group meeting. The model is piloted on three suburbs of Gold Coast City, Australia. Final neighbourhood level sustainability index score was calculated by employing equal weighting schema. The results of the study show that indexing modelling is a reasonably practical method to measure and visualise local sustainability performance, which can be employed as an effective communication and decision making tool.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
This study explores the relationship between new venture team composition and new venture persistence and performance over time. We examine the team characteristics of a 5-year panel study of 202 new venture teams and new venture performance. Our study makes two contributions. First, we extend earlier research concerning homophily theories of the prevalence of homogeneous teams. Using structural event analysis we demonstrate that team members’ start-up experience is important in this context. Second, we attempt to reconcile conflicting evidence concerning the influence of team homogeneity on performance by considering the element of time. We hypothesize that higher team homogeneity is positively related to short term outcomes, but is less effective in the longer term. Our results confirm a difference over time. We find that more homogeneous teams are less likely to be higher performing in the long term. However, we find no relationship between team homogeneity and short-term performance outcomes.
Resumo:
As universities worldwide begin to appreciate the value of authentic learning experiences, so they struggle with methods of assessing the outcomes from such experiences. This chapter describes the application of an assessment matrix developed by Queensland University of Technology(QUT) in Australia, to the assessment requirements and practices relating to work integrated learning at the University of Surrey in the UK. Despite the very different institutional contexts and independent way in which the assessment regimes have developed, it was found that the values and outcomes being assessed and the methods used to assess them were similar. The most important feature of assessing work integrated learning experiences is fitness for purpose, hence the learning objectives and assessment of outcomes for a WIL experience must be explicitly aligned to this objective.As universities worldwide begin to appreciate the value of authentic learning experiences, so they struggle with methods of assessing the outcomes from such experiences. This chapter describes the application of an assessment matrix developed by Queensland University of Technology (QUT) in Australia, to the assessment requirements and practices relating to work integrated learning at the University of Surrey in the UK. Despite the very different institutional contexts and independent way in which the assessment regimes have developed, it was found that the values and outcomes being assessed and the methods used to assess them were similar. The most important feature of assessing work integrated learning experiences is fitness for purpose, hence the learning objectives and assessment of outcomes for a WIL experience must be explicitly aligned to this objective.
Resumo:
Background: Few studies have specifically investigated the functional effects of uncorrected astigmatism on measures of reading fluency. This information is important to provide evidence for the development of clinical guidelines for the correction of astigmatism. Methods: Participants included 30 visually normal, young adults (mean age 21.7 ± 3.4 years). Distance and near visual acuity and reading fluency were assessed with optimal spectacle correction (baseline) and for two levels of astigmatism, 1.00DC and 2.00DC, at two axes (90° and 180°) to induce both against-the-rule (ATR) and with-the-rule (WTR) astigmatism. Reading and eye movement fluency were assessed using standardized clinical measures including the test of Discrete Reading Rate (DRR), the Developmental Eye Movement (DEM) test and by recording eye movement patterns with the Visagraph (III) during reading for comprehension. Results: Both distance and near acuity were significantly decreased compared to baseline for all of the astigmatic lens conditions (p < 0.001). Reading speed with the DRR for N16 print size was significantly reduced for the 2.00DC ATR condition (a reduction of 10%), while for smaller text sizes reading speed was reduced by up to 24% for the 1.00DC ATR and 2.00DC condition in both axis directions (p<0.05). For the DEM, sub-test completion speeds were significantly impaired, with the 2.00DC condition affecting both vertical and horizontal times and the 1.00DC ATR condition affecting only horizontal times (p<0.05). Visagraph reading eye movements were not significantly affected by the induced astigmatism. Conclusions: Induced astigmatism impaired performance on selected tests of reading fluency, with ATR astigmatism having significantly greater effects on performance than did WTR, even for relatively small amounts of astigmatic blur of 1.00DC. These findings have implications for the minimal prescribing criteria for astigmatic refractive errors.
Resumo:
Purpose: Important performance objectives manufacturers sought can be achieved through adopting the appropriate manufacturing practices. This paper presents a conceptual model proposing relationship between advanced quality practices, perceived manufacturing difficulties and manufacturing performances. Design/methodology/approach: A survey-based approach was adopted to test the hypotheses proposed in this study. The selection of research instruments for inclusion in this survey was based on literature review, the pilot case studies and relevant industrial experience of the author. A sample of 1000 manufacturers across Australia was randomly selected. Quality managers were requested to complete the questionnaire, as the task of dealing with the quality and reliability issues is a quality manager’s major responsibility. Findings: Evidence indicates that product quality and reliability is the main competitive factor for manufacturers. Design and manufacturing capability and on time delivery came second. Price is considered as the least important factor for the Australian manufacturers. Results show that collectively the advanced quality practices proposed in this study neutralize the difficulties manufacturers face and contribute to the most performance objectives of the manufacturers. The companies who have put more emphasize on the advanced quality practices have less problem in manufacturing and better performance in most manufacturing performance indices. The results validate the proposed conceptual model and lend credence to hypothesis that proposed relationship between quality practices, manufacturing difficulties and manufacturing performances. Practical implications: The model shown in this paper provides a simple yet highly effective approach to achieving significant improvements in product quality and manufacturing performance. This study introduces a relationship based ‘proactive’ quality management approach and provides great potential for managers and engineers to adopt the model in a wide range of manufacturing organisations. Originality/value: Traditional ways of checking product quality are different types of testing, inspection and screening out bad products after manufacturing them. In today’s manufacturing where product life cycle is very short, it is necessary to focus on not to manufacturing them first rather than screening out the bad ones. This study introduces, for the first time, the idea of relationship based advanced quality practices (AQP) and suggests AQPs will enable manufacturers to develop reliable products and minimize the manufacturing anomalies. This paper explores some of the attributes of AQP capable of reducing manufacturing difficulties and improving manufacturing performances. The proposed conceptual model contributes to the existing knowledge base of quality practices and subsequently provides impetus and guidance towards increasing manufacturing performance.
Resumo:
Occupational driving crashes are the most common cause of death and injury in the workplace. The physical and psychological outcomes following injury are also very costly to organizations. Thus, safe driving poses a managerial challenge. Some research has attempted to address this issue through modifying discrete and often simple target behaviors (e.g., driver training programs). However, current intervention approaches in the occupational driving field generally do not consider the role of organizational factors in workplace safety. This study adopts the A-B-C framework to identify the contingencies associated with an effective exchange of safety information within the occupational driving context. Utilizing a sample of occupational drivers and their supervisors, this multi-level study examines the contingencies associated with the exchange of safety information within the supervisor-driver relationship. Safety values are identified as an antecedent of the safety information exchange, and the quality of the leader-member exchange relationship and safe driving performance is identified as the behavioral consequences. We also examine the function of role overload as a factor influencing the relationship between safety values and the safety information exchange. Hierarchical Linear Modelling found that role overload moderated the relationship between supervisors’ perceptions of the value given to safety and the safety information exchange. A significant relationship was also found between the safety information exchange and the subsequent quality of the leader-member exchange relationship. Finally, the quality of the leader-member exchange relationship was found to be significantly associated with safe driving performance. Theoretical and practical implications of these results are discussed.
An experimental and computational investigation of performance of Green Gully for reusing stormwater
Resumo:
A new stormwater quality improvement device (SQID) called ‘Green Gully’ has been designed and developed in this study with an aim to re-using stormwater for irrigating plants and trees. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational Fluid Dynamics (CFD) code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.
Resumo:
Windows are one of the most significant elements in the design of buildings. Whether there are small punched openings in the facade or a completely glazed curtain wall, windows are usually a dominant feature of the building's exterior appearance. From the energy use perspective, windows may also be regarded as thermal holes for a building. Therefore, window design and selection must take both aesthetics and serviceability into consideration. In this paper, using building computer simulation techniques, the effects of glass types on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that a glass type with lower shading coefficient will have a lower building cooling load and total energy use. Through the comparison of results between current and future weather scenarios, it is identified that the pattern found from the current weather scenario would also exist in the future weather scenario, although the scale of change would become smaller. The possible implication of glazing selection in face of global warming is also examined. It is found that compared with its influence on building thermal performance, its influence on the building energy use is relatively small or insignificant.
Resumo:
This paper seeks to explore how organisations can effectively use performance management systems (PMS) to monitor collective identities. The monitoring of relationships between identity and an influential PMS—the balanced scorecard (BSC)—are explored. Drawing from identity and management accounting literature, this paper argues that identity products, patternings and processes are commonly positioned, monitored and interpreted through the multiple perspectives and levels of the BSC. Specifically, human, technical and organisational capital under the Learning and Growth perspective of the BSC can incorporate various identity measures that sustain the relative, distinctive and fluid nature of identities. The value of this research is to strengthen the theoretical grounds which position identity as an important dimension of organisational capital in PMS.
Resumo:
The motivation of the study stems from the results reported in the Excellence in Research for Australia (ERA) 2010 report. The report showed that only 12 universities performed research at or above international standards, of which, the Group of Eight (G8) universities filled the top eight spots. While performance of universities was based on number of research outputs, total amount of research income and other quantitative indicators, the measure of efficiency or productivity was not considered. The objectives of this paper are twofold. First, to provide a review of the research performance of 37 Australian universities using the data envelopment analysis (DEA) bootstrap approach of Simar and Wilson (2007). Second, to determine sources of productivity drivers by regressing the efficiency scores against a set of environmental variables.
Resumo:
In this work, we present the development of a Pt/graphene/SiC device for hydrogen gas sensing. A single layer of graphene was deposited on 6H-SiC via chemical vapor deposition. The presence of graphene C-C bonds was observed via X-ray photoelectron spectroscopy analysis. Current-voltage characteristics of the device were measured at the presence of hydrogen at different temperatures, from 25°C to 170°C. The dynamic response of the device was recorded towards hydrogen gas at an optimum temperature of 130°C. A voltage shift of 191 mV was recorded towards 1% hydrogen at −1 mA constant current.