911 resultados para Peptide Mimetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

FK506 binding protein-like (FKBPL) and its peptide derivatives exert potent anti-angiogenic activity and and control tumour growth in xenograft models, when administered exogenously. However, the role of endogenous FKBPL in angiogenesis is not well characterised. Here we investigated the molecular effects of the endogenous protein and its peptide derivative, AD-01, leading to their anti-migratory activity. Inhibition of secreted FKBPL using a blocking antibody or siRNA-mediated knockdown of FKBPL accelerated the migration of human microvascular endothelial cells (HMEC-1). Furthermore, MDA-MB-231 tumour cells stably overexpressing FKBPL inhibited tumour vascular development suggesting that FKBPL secreted from tumour cells could inhibit angiogenesis. Whilst FKBPL and AD-01 target CD44, the nature of this interaction is not known and here we have further interrogated this aspect. We have demonstrated that FKBPL and AD-01 bind to the CD44 receptor and inhibit tumour cell migration in a CD44 dependant manner; CD44 knockdown abrogated AD-01 binding as well as its anti-migratory activity. Interestingly, FKBPL overexpression and knockdown or treatment with AD-01, regulated CD44 expression, suggesting a co-regulatory pathway for these two proteins. Downstream of CD44, alterations in the actin cytoskeleton, indicated by intense cortical actin staining and a lack of cell spreading and communication were observed following treatment with AD-01, explaining the anti-migratory phenotype. Concomitantly, AD-01 inhibited Rac-1 activity, up-regulated RhoA and the actin binding proteins, profilin and vinculin. Thus the anti-angiogenic protein, FKBPL, and AD-01, offer a promising and alternative approach for targeting both CD44 positive tumours and vasculature networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identified nine small-molecule hit compounds of Heat shock 70 kDa protein 5 (HSPA5) from cascade in silico screening based on the binding modes of the tetrapeptides derived from the peptide substrate or inhibitors of Escherichia coli HSP70. Two compounds exhibit promising inhibition activities from cancer cell viability and tumor inhibition assays. The binding modes of the hit compounds provide a platform for development of selective small molecule inhibitors of HSPA5. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Waxy Monkey Leaf Frog, Phyllomedusa sauvagei, has been extensively-studied for many years, and a broad spectrum of bioactive peptides has been found in its skin secretions. Here we report the discovery of a novel tryptophyllin (TPH) peptide, named PsT-1, from this frog species. Skin secretions from specimens of P. sauvagei were collected by mild electrical stimulation. Peptides were identified and characterized by transcriptome cloning, and the structure was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This novel peptide was encoded by a single precursor of 61 amino acid residues, whose primary structure was deduced from cloned skin cDNA. Analysis of different amphibian tryptophyllins revealed that PsT-1 exhibited a high degree of primary structural similarity to its homologues, PdT-1 and PdT-2, from the Mexican giant leaf frog, Pachymedusa dacnicolor. A synthetic replicate of PsT-1 was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle. It was also found that PsT-1 had an anti-proliferative effect on three different human prostate cancer cell lines (LNCaP/PC3/DU145), by use of an MTT assay coupled with direct cell counting as measures of cell growth. These data indicate that PsT-1 is a likely bradykinin receptor antagonist and its biological effects are probably mediated through bradykinin receptors. As a BK antagonist, PST-1, with antagonistic effects on BK in artery smooth muscle, inhibition of proliferation in prostate cancer cells and lack of undesirable side effects, may have potential in cardiovascular, inflammatory and anticancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (APs) impose a threat to the survival of pathogens, and it is reasonable to postulate that bacteria have developed strategies to counteract them. Polymyxins are becoming the last resort to treat infections caused by multidrug-resistant Gram-negative bacteria and, similar to APs, they interact with the anionic lipopolysaccharide. Given that polymyxins and APs share the initial target, it is possible that bacterial defense mechanisms against polymyxins will be also effective against host APs. We sought to determine whether exposure to polymyxin will increase Klebsiella pneumoniae resistance to host APs. Indeed, exposure of K. pneumoniae to polymyxin induces cross-resistance not only to polymyxin itself but also to APs present in the airways. Polymyxin treatment upregulates the expression of the capsule polysaccharide operon and the loci required to modify the lipid A with aminoarabinose and palmitate with a concomitant increase in capsule and lipid A species containing such modifications. Moreover, these surface changes contribute to APs resistance and also to polymyxin-induced cross-resistance to APs. Bacterial loads of lipid A mutants in trachea and lungs of intranasally infected mice were lower than those of wild-type strain. PhoPQ, PmrAB, and the Rcs system govern polymyxin-induced transcriptional changes, and there is a cross talk between PhoPQ and the Rcs system. Our findings support the notion that Klebsiella activates a defense program against APs that is controlled by three signaling systems. Therapeutic strategies directed to prevent the activation of this program could be a new approach worth exploring to facilitate the clearance of the pathogen from the airways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posttranslational processing of proadrenomedullin generates two biologically active peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP). Sequence comparison of homologous proadrenomedullin genes in vertebrate evolution shows a high degree of stability in the reading frame for AM, whereas PAMP sequence changes rapidly. Here we investigate the functional significance of PAMP phylogenetic variation studying two of PAMP's better characterized physiological activities, angiogenic potential and antimicrobial capability, with synthetic peptides carrying the predicted sequence for human, mouse, chicken, and fish PAMP. All tested peptides induced angiogenesis when compared with untreated controls, but chicken and fish PAMP, which lack terminal amidation, were apparently less angiogenic than their human and mouse homologs. Confirming the role of amidation in angiogenesis, Gly-extended and free acid variants of human PAMP produced responses similar to the natural nonamidated peptides. In contrast, antimicrobial activity was restricted to human PAMP, indicating that this function may have been acquired at a late time during the evolution of PAMP. Interestingly, free acid human PAMP retained antimicrobial activity whereas the Gly-extended form did not. This fact may reflect the need for maintaining a tightly defined structural conformation in the pore-forming mechanism proposed for these antimicrobial agents. The evolution of PAMP provides an example of an angiogenic peptide that developed antimicrobial capabilities without losing its original function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outer membrane (OM) of the intracellular parasite Brucella abortus is permeable to hydrophobic probes and resistant to destabilization by polycationic peptides and EDTA. The significance of these unusual properties was investigated in a comparative study with the opportunistic pathogens of the genus Ochrobactrum, the closest known Brucella relative. Ochrobactrum spp. OMs were impermeable to hydrophobic probes and sensitive to polymyxin B but resistant to EDTA. These properties were traced to lipopolysaccharide (LPS) because (i) insertion of B. abortus LPS, but not of Escherichia coli LPS, into Ochrobactrum OM increased its permeability; (ii) permeability and polymyxin B binding measured with LPS aggregates paralleled the results with live bacteria; and (iii) the predicted intermediate results were obtained with B. abortus-Ochrobactrum anthropi and E. coli-O. anthropi LPS hybrid aggregates. Although Ochrobactrum was sensitive to polymyxin, self-promoted uptake and bacterial lysis occurred without OM morphological changes, suggesting an unusual OM structural rigidity. Ochrobactrum and B. abortus LPSs showed no differences in phosphate, qualitative fatty acid composition, or acyl chain fluidity. However, Ochrobactrum LPS, but not B. abortus LPS, contained galacturonic acid. B. abortus and Ochrobactrum smooth LPS aggregates had similar size and zeta potential (-12 to -15 mV). Upon saturation with polymyxin, zeta potential became positive (1 mV) for Ochrobactrum smooth LPS while remaining negative (-5 mV) for B. abortus smooth LPS, suggesting hindered access to inner targets. These results show that although Ochrobactrum and Brucella share a basic OM pattern, subtle modifications in LPS core cause markedly different OM properties, possibly reflecting the adaptive evolution of B. abortus to pathogenicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: FKBPL and its peptide derivative, AD-01, have already demonstrated tumour growth inhibition and CD44 dependent anti-angiogenic activity. Here we explore the ability of AD-01 to target CD44 positive breast cancer stem cells (BCSCs). EXPERIMENTAL DESIGN: Mammosphere assays and flow cytometry were utilized to analyse the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anti-cancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples and xenografts. Delays in tumour initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, qPCR and immunofluorescence. RESULTS: AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere forming efficiency (MFE) and ESA+/CD44+/CD24- or ALDH+ cell subpopulations in vitro and tumour initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism appears to be due to AD-01-mediated BCSC differentiation demonstrated by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4 and Sox2, were also significantly reduced. Furthermore, we demonstrated additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signalling. CONCLUSIONS: AD-01 has dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.google.com/patents/EP2928909A1?cl=en