1000 resultados para Parentage Order
Resumo:
Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.
Resumo:
A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
[EN] One universal feature of human languages is the division between grammatical functors and content words. From a learnability point of view, functors might provide entry points or anchors into the syntactic structure of utterances due to their high frequency. Despite its potentially universal scope, this hypothesis has not yet been tested on typologically different languages and on populations of different ages. Here we report a corpus study and an artificial grammar learning experiment testing the anchoring hypothesis in Basque, Japanese, French, and Italian adults. We show that adults are sensitive to the distribution of functors in their native language and use them when learning new linguistic material. However, compared to infants’ performance on a similar task, adults exhibit a slightly different behavior, matching the frequency distributions of their native language more closely than infants do. This finding bears on the issue of the continuity of language learning mechanism.
Resumo:
Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.
Resumo:
A constrained high-order statistical algorithm is proposed to blindly deconvolute the measured spectral data and estimate the response function of the instruments simultaneously. In this algorithm, no prior-knowledge is necessary except a proper length of the unit-impulse response. This length can be easily set to be the width of the narrowest spectral line by observing the measured data. The feasibility of this method has been demonstrated experimentally by the measured Raman and absorption spectral data.
Resumo:
What kinds of motion can occur in classical mechanics? We address this question by looking at the structures traced out by trajectories in phase space; the most orderly, completely integrable systems are characterized by phase trajectories confined to low-dimensional, invariant tori. The KAM theory examines what happens to the tori when an integrable system is subjected to a small perturbation and finds that, for small enough perturbations, most of them survive.
The KAM theory is mute about the disrupted tori, but, for two-dimensional systems, Aubry and Mather discovered an astonishing picture: the broken tori are replaced by "cantori," tattered, Cantor-set remnants of the original invariant curves. We seek to extend Aubry and Mather's picture to higher dimensional systems and report two kinds of studies; both concern perturbations of a completely integrable, four-dimensional symplectic map. In the first study we compute some numerical approximations to Birkhoff periodic orbits; sequences of such orbits should approximate any higher dimensional analogs of the cantori. In the second study we prove converse KAM theorems; that is, we use a combination of analytic arguments and rigorous, machine-assisted computations to find perturbations so large that no KAM tori survive. We are able to show that the last few of our Birkhoff orbits exist in a regime where there are no tori.
Resumo:
We experimentally investigate the high-order harmonic generation in argon gas using a driving laser pulse at a center wavelength of 1240 nm. High-contrast fine interference fringes could be observed in the harmonic spectra near the propagation axis, which is attributed to the interference between long and short quantum paths. We also systematically examine the variation of the interference fringe pattern with increasing energy of the driving pulse and with different phase-matching conditions.
Resumo:
We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.
Resumo:
We experimentally investigate the evolution of an angularly resolved spectrum of third harmonic generated by infrared femtosecond laser pulse filamentation in air. We show that at low pump intensity, phase matching between the fundamental and third-harmonic waves dominates the nonlinear optical effect and induces a ring structure of the third-harmonic beam, whereas at high pump intensity, the dispersion properties of air begin to affect the angular spectrum, leading to the formation of a nonlinear X wave at third harmonic.
Resumo:
This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.
Resumo:
We theoretically demonstrate the selective enhancement of high-order harmonic generation (HHG) in two-color laser fields consisting of a single-cycle fundamental wave (800 nm wavelength) and a multicycle subharmonic wave (2400 nm wavelength). By performing time-frequency analyses based on a single-active-electron model, we reveal that such an enhancement is a result of the modified electron trajectories in the two-color field. Furthermore, we show that selectively enhanced HHG gives rise to a bandwidth-controllable extreme ultraviolet supercontinuum in the plateau region, facilitating the generation of intense single isolated attosecond pulses.
Resumo:
We experimentally investigate the generation of high-order harmonics in a 4-mm-long gas cell using midinfrared femtosecond pulses at various wavelengths of 1240 nm, 1500 nm, and 1800 nm. It is observed that the yield and cutoff energy of the generated high-order harmonics critically depend on focal position, gas pressure, and size of the input beam which can be controlled by an aperture placed in front of the focal lens. By optimizing the experimental parameters, we achieve a cutoff energy at similar to 190 eV with the 1500 nm driving pulses, which is the highest for the three wavelengths chosen in our experiment.