933 resultados para Parana sedimentary basin
Resumo:
The Darcy-Weisbach equation was used in the analysis of flow over spillways, furnishing theoretical tools to design stilling basins. Predictions for the length of hydraulic jump stilling basins downstream of stepped and smooth spillways are presented, together with ranges of values for the Darcy-Weisbach friction factor of both spillways. The experimental data were compared with results of the theoretical solution of the gradually varied flow equation. All comparisons were made in non-dimensional form. The values of the Darcy-Weisbach friction factor were roughly five times smaller for smooth spillways than for stepped spillways. The theoretical predictions and the experimental data allow to present approximate equations for a preliminary evaluation of the length and the bed level of hydraulic jump stilling basins. In the same way, approximate equations were presented for the evaluation of the friction factor in smooth and stepped spillways, as a function of the Froude number at the downstream cross-section.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
The objective of this work was to select indigenous vegetal species for restoration programs aiming at the regeneration of ombrophilous dense forest. Thirty-five spoil piles located in the county of Sideropolis, Santa Catarina, that received overburden disposal for 39 years (1950-1989) were selected for study because they exhibited remarkable spontaneous regrowth of trees compared to surrounding spoil piles. Floristic inventory covered the whole area of the 35 piles, whereas survey on phytosociology and natural regeneration studies were conducted in 70 plots distributed along the 35 piles. Floristic inventory recorded 83 species from 28 botanical families. Herbaceous terricolous plants constituted the predominant species (47.0%), followed by shrubs (26.5%), trees (19.3%), and vines (7.2%). Results from surveys on phytosociology and natural regeneration, focused on shrubs and trees, recorded incipient ecological succession. In addition, the most adapted species recorded on the overburden piles, as ranked by index of natural regeneration (RNT) plus importance value index (IVI), were as follows: Clethra scabra (RNT = 23.93%; IVI = 17.28%), Myrsine coriacea (RNT = 20.93%, IVI = 11.26%), Eupatorium intermedium (RNT 7.56%, IVI 0.40%), Miconia ligustroides (RNT 5.84%, IVI 2.37%), Ossaea amygdaloides (RNT 3.84%, IVI 1.30%), Tibouchina sellowiana (RNT 3.29%, M 1.94%), Eup. inulaefolium (RNT = 2.65%, IVI = 0.80%), and Baccharis dracunculifolia (RNT = 2.28%; IVI = 0.56%). High values of IVI and RNT exhibited by the exotic species Eucalyptus saligna (IVI = 21.73%, RNT = 51.41%) indicated strong competition between exotic and indigenous species. Severe chemical (acidic pH and lack of nutrients) and physical (coarse substrate and slope angle of 40-50 degrees) characteristics displayed by the overburden piles constituted limitations to floristic diversity and size of indigenous trees, indicating the need for substrate reclamation prior to forest restoration.
Resumo:
The success in the adoption of peach integrated production (IP) was evaluated in small orchards of the Parana State. The importance of specific technical accompaniment; points of strangulating in adoption of technology and the classification of the areas to IP conformity were evaluated. The seasons 2005/2006 (without IP orientation) and 2006/2007 (with IP orientation) were compared considering 20 producers who were oriented monthly to attend the minimum requisites. The incidence of peach rust (Tranzschelia discolor) and of brown rot (Monilinia fructicola) in full bloom was evaluated in 2006/2007 and 2007/2008 seasons, as biological parameters to accompany the efficiency of system adoption. After the technical accompaniment in 2007/2008 season, the software APOIA-Novo Rural-PI (APOIA-PI) was applied to measure the conformity to IP in peach orchards. The conformity index of each orchard was compared to the minimum requisite to classify as IP (0.7). The major difficulties in register of field book were: pests monitoring; collect of climate data and the harvest evaluation. The technical accompaniment increased in 60% the conformity in use of field book. In 2007/2008 season, the brown rot incidence increased in some areas, caused by not following IP recommendations. The inadequate management caused the increment in pathogen inoculum, promoting the disease development in peach orchards. The APOIA-PI classified two orchards as good agricultural practices (GAP) (0.7 <= conformity index >= 0.4), two as integrated production (IP) (>= 0.7) and the other orchards had conformity index lower than 0.4.
Resumo:
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.
Resumo:
This article reports major results from collaborative research between France and Brazil on soil and water systems, carried out in the Upper Amazon Basin. It reveals the weathering processes acting in the partly inundated, low elevation plateaus of the Basin, mostly covered by evergreen forest. Our findings are based on geochemical data and mineral spectroscopy that probe the crystal chemistry of Fe and Al in mineral phases (mainly kaolinite, Al- and Fe-(hydr)oxides) of tropical soils (laterites). These techniques reveal crystal alterations in mineral populations of different ages and changes of metal speciation associated with mineral or organic phases. These results provide an integrated model of soil formation and changes (from laterites to podzols) in distinct hydrological compartments of the Amazon landscapes and under altered water regimes. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Climatic variations influence formation and maturation of coffee grains by altering their intrinsic characteristics, which call allow for several types of coffee qualities, including the potential for production of special coffee. This study was carried out to verify the effect of environmental conditions and crop cultivation on chemical composition and their consequences in cup quality of coffees from region of Jesuitas, Parana State. During the same crop season this study was accomplished (2002-2003), cup quality was evaluated among the producers in several coffee-growing municipalities in Parana State. It was observed that 86% of samples were classified simply as ""soft"" (smooth flavor) or ""hard"" (bolder flavor), and 14% were classified as rioysh/rio (strong unpleasant taste). The results concluded that the practices adopted by producers, who have collaborated with the study, reflected positively oil the final cup quality, when compared to the overall quality results in the State. The climatic conditions and practices of crop management and harvest ill the Jesuitas region made for bolder coffee with low acidity, comparable to high quality coffees produced in Brazil and abroad.
Resumo:
In the present study, clinical and epidemiological aspects of 529 intoxication cases of organophosphate or carbamate pesticides in the northwest of the state of Parana, Brazil, over a twelve-year period (1994-2005), are presented. One hundred-five of 257 patients (40.8%) who attempted suicide were admitted to Intensive Care Units (ICUs), with an average hospital stay of two days (range 1-40 days). Men corresponded to 56.4% of the cases of suicide attempts and sixteen individuals died. One hundred-forty patients intoxicated due to occupational exposure were all young adults and nine of them were admitted to ICU, with average hospital stays of eight days (range 1-16 days). Of these cases, two patients died. One hundred twenty-four patients intoxicated due to accidental exposure were mainly children and had a hospital average stay of four days. Twenty patients were admitted to the ICU, and one of them died. Overall complications included respiratory failure, convulsions, and aspiration pneumonia. Deliberate ingestion of organophosphates and carbamates Was much more toxic than occupational and accidental exposure. Men aged 15-39 years were the most likely to attempt suicide with these agents and had more prolonged ICU with significant complications and mortality
Resumo:
Open system pyrolysis (heating rate 10 degrees C/min) of coal maturity (vitrinite reflectance, VR) sequence (0.5%, 0.8% and 1.4% VR) demonstrates that there are two stages of thermogenic methane generation from Bowen Basin coals. The first and major stage shows a steady increase in methane generation maximising at 570 degrees C, corresponding to a VR of 2-2.5%. This is followed by a less intense methane generation which has not as yet maximised by 800 degrees C (equivalent to VR of 5%). Heavier (C2+) hydrocarbons are generated up to 570 degrees C after which only the C-1 (CH4, CO and CO2) gases are produced. The main phase of heavy hydrocarbon generation occurs between 420 and 510 degrees C. Over this temperature range,methane generation accounts for only a minor component, whereas the wet gases (C-2-C-5) are either in equal abundance or are more abundant by a factor of two than the liquid hydrocarbons. The yields of non-hydrocarbon gases CO2 and CO are greater then methane during the early stages of gas generation from an immature coal, subordinate to methane during the main phase of methane generation after which they are again dominant. Compositional data for desorbed and produced coal seam gases from the Bowen show that CO2 and wet gases are a minor component. This discrepancy between the proportion of wet gas components produced during open system pyrolysis and that observed in naturally matured coals may be the result of preferential migration of wet gas components, by dilution of methane generated during secondary cracking of bitumen, or kinetic effects associated with different activations for production of individual hydrocarbon gases. Extrapolation of results of artificial pyrolysis of the main organic components in coal to geological significant heating rates suggests that isotopically light methane to delta(13)C of -50 parts per thousand can be generated. Carbon isotope depletions in C-13 are further enhanced, however, as a result of trapping of gases over selected rank levels (instantaneous generation) which is a probable explanation for the range of delta(13)C values we have recorded in methane desorbed from Bowen Basin coals (-51 +/- 9 parts per thousand). Pervasive carbonate-rich veins in Bowen Basin coals are the product of magmatism-related hydrothermal activity. Furthermore, the pyrolysis results suggest an additional organic carbon source front CO2 released at any stage during the maturation history could mix in varying proportions with CO2 from the other sources. This interpretation is supported by C and O isotopic ratios, of carbonates that indicate mixing between magmatic and meteoric fluids. Also, the steep slope of the C and O isotope correlation trend suggests that the carbonates were deposited over a very narrow temperature interval basin-wide, or at relatively high temperatures (i.e., greater than 150 degrees C) where mineral-fluid oxygen isotope fractionations are small. These temperatures are high enough for catagenic production of methane and higher hydrocarbons from the coal and coal-derived bitumen. The results suggests that a combination of thermogenic generation of methane and thermodynamic processes associated with CH4/CO2 equilibria are the two most important factors that control the primary isotope and molecular composition of coal seam gases in the Bowen Basin. Biological process are regionally subordinate but may be locally significant. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Authigenic carbonate minerals are ubiquitous throughout the Late Permian coal measures of the Bowen Basin, Queensland, Australia. In the northern Bowen Basin, carbonates include the following assemblages: siderite I (delta O-18(SMOW) = +11.4 to + 17%, delta C-13(PDB) = - 5.3 to + 120), Fe-Mg calcite-ankerite-siderite II mineral association (delta O-18(SMOW) = +7.2 to + 10.20, delta C-13(PDB) = 10.9 to - 1.80 for ankerite) and a later calcite (delta O-18(SMOW) = +5.9 to + 14.60, delta C-13(PDB) = -11.4 to + 4.40). In the southern Bowen Basin, the carbonate phase consists only of calcite (delta O-18(SMOW) = +12.5 to + 14.80, delta C-13(PDB) = -19.4 to + 0.80), where it occurs extensively throughout all stratigraphic levels. Siderite I occurs in mudrocks and sandstones and predates all other carbonate minerals. This carbonate phase is interpreted to have formed as an early diagenetic mineral from meteoric waters under cold climate and reducing conditions. Fe-Mg calcite-ankerite-siderite Il occur in sandstones as replacement of volcanic rock fragments. Clay minerals (illite-smectite, chlorite and kaolinite) postdate Ca-Fe-Mg carbonates, and precipitation of the later calcite is associated with clay mineral formation. The Ca-Fe-Mg carbonates and later calcite of the northern Bowen Basin are regarded as having formed as a result of hydrothermal activity during the latest Triassic extensional tectonic event which affected this part of the basin, rather than deep burial diagenesis during the Middle to Late Triassic as previously reported. This hypothesis is based on the timing relationships of the authigenic mineral phases and the low delta O-18 values of ankerite and calcite, together with radiometric dating of illitic clays and recently published regional geological evidence. Following the precipitation of the Ca-Fe-Mg carbonates from strongly O-18-depleted meteoric-hydrothermal fluids, continuing fluid circulation and water-rock interaction resulted in dissolution of these carbonate phases as well as labile fragments of volcaniclastic rocks. Subsequently, the later calcite and day minerals precipitated from relatively evolved (O-18-enriched) fluids. The nearly uniform delta O-18 values of the southern Bowen Basin calcite have been attributed to very low water/rock ratio in the system, where the fluid isotropic composition was buffered by the delta O-18 values of rocks. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We re-mapped the soils of the Murray-Darling Basin (MDB) in 1995-1998 with a minimum of new fieldwork, making the most out of existing data. We collated existing digital soil maps and used inductive spatial modelling to predict soil types from those maps combined with environmental predictor variables. Lithology, Landsat Multi Spectral Scanner (Landsat MSS), the 9-s digital elevation model (DEM) of Australia and derived terrain attributes, all gridded to 250-m pixels, were the predictor variables. Because the basin-wide datasets were very large data mining software was used for modelling. Rule induction by data mining was also used to define the spatial domain of extrapolation for the extension of soil-landscape models from existing soil maps. Procedures to estimate the uncertainty associated with the predictions and quality of information for the new soil-landforms map of the MDB are described. (C) 2002 Elsevier Science B.V. All rights reserved.