904 resultados para Parallel and Distributed Processing
Resumo:
We have analysed the extent of base-pairing interactions between spacer sequences of histone pre-mRNA and U7 snRNA present in the trans-acting U7 snRNP and their importance for histone RNA 3' end processing in vitro. For the efficiently processed mouse H4-12 gene, a computer analysis revealed that additional base pairs could be formed with U7 RNA outside of the previously recognised spacer element (stem II). One complementarity (stem III) is located more 3' and involves nucleotides from the very 5' end of U7 RNA. The other, more 5' located complementarity (stem I) involves nucleotides of the Sm binding site of U7 RNA, a part known to interact with snRNP structural proteins. These potential stem structures are separated from each other by short internal loops of unpaired nucleotides. Mutational analyses of the pre-mRNA indicate that stems II and III are equally important for interaction with the U7 snRNP and for processing, whereas mutations in stem I have moderate effects on processing efficiency, but do not impair complex formation with the U7 snRNP. Thus nucleotides near the processing site may be important for processing, but do not contribute to the assembly of an active complex by forming a stem I structure. The importance of stem III was confirmed by the ability of a complementary mutation in U7 RNA to suppress a stem III mutation in a complementation assay using Xenopus laevis oocytes. The main role of the factor(s) binding to the upstream hairpin loop is to stabilise the U7-pre-mRNA complex. This was shown by either stabilising (by mutation) or destabilising (by increased temperature) the U7-pre-mRNA base-pairing under conditions where hairpin factor binding was either allowed or prevented (by mutation or competition). The hairpin dependence of processing was found to be inversely related to the strength of the U7-pre-mRNA interaction.
Resumo:
The problem of fairly distributing the capacity of a network among a set of sessions has been widely studied. In this problem, each session connects via a single path a source and a destination, and its goal is to maximize its assigned transmission rate (i.e., its throughput). Since the links of the network have limited bandwidths, some criterion has to be defined to fairly distribute their capacity among the sessions. A popular criterion is max-min fairness that, in short, guarantees that each session i gets a rate λi such that no session s can increase λs without causing another session s' to end up with a rate λs/ <; λs. Many max-min fair algorithms have been proposed, both centralized and distributed. However, to our knowledge, all proposed distributed algorithms require control data being continuously transmitted to recompute the max-min fair rates when needed (because none of them has mechanisms to detect convergence to the max-min fair rates). In this paper we propose B-Neck, a distributed max-min fair algorithm that is also quiescent. This means that, in absence of changes (i.e., session arrivals or departures), once the max min rates have been computed, B-Neck stops generating network traffic. Quiescence is a key design concept of B-Neck, because B-Neck routers are capable of detecting and notifying changes in the convergence conditions of max-min fair rates. As far as we know, B-Neck is the first distributed max-min fair algorithm that does not require a continuous injection of control traffic to compute the rates. The correctness of B-Neck is formally proved, and extensive simulations are conducted. In them, it is shown that B-Neck converges relatively fast and behaves nicely in presence of sessions arriving and departing.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
Abstract is not available.
Resumo:
Tradicionalmente, la fabricación de materiales compuestos de altas prestaciones se lleva a cabo en autoclave mediante la consolidación de preimpregnados a través de la aplicación simultánea de altas presiones y temperatura. Las elevadas presiones empleadas en autoclave reducen la porosidad de los componentes garantizando unas buenas propiedades mecánicas. Sin embargo, este sistema de fabricación conlleva tiempos de producción largos y grandes inversiones en equipamiento lo que restringe su aplicación a otros sectores alejados del sector aeronáutico. Este hecho ha generado una creciente demanda de sistemas de fabricación alternativos al autoclave. Aunque estos sistemas son capaces de reducir los tiempos de producción y el gasto energético, por lo general, dan lugar a materiales con menores prestaciones mecánicas debido a que se reduce la compactación del material al aplicar presiones mas bajas y, por tanto, la fracción volumétrica de fibras, y disminuye el control de la porosidad durante el proceso. Los modelos numéricos existentes permiten conocer los fundamentos de los mecanismos de crecimiento de poros durante la fabricación de materiales compuestos de matriz polimérica mediante autoclave. Dichos modelos analizan el comportamiento de pequeños poros esféricos embebidos en una resina viscosa. Su validez no ha sido probada, sin embargo, para la morfología típica observada en materiales compuestos fabricados fuera de autoclave, consistente en poros cilíndricos y alargados embebidos en resina y rodeados de fibras continuas. Por otro lado, aunque existe una clara evidencia experimental del efecto pernicioso de la porosidad en las prestaciones mecánicas de los materiales compuestos, no existe información detallada sobre la influencia de las condiciones de procesado en la forma, fracción volumétrica y distribución espacial de los poros en los materiales compuestos. Las técnicas de análisis convencionales para la caracterización microestructural de los materiales compuestos proporcionan información en dos dimensiones (2D) (microscopía óptica y electrónica, radiografía de rayos X, ultrasonidos, emisión acústica) y sólo algunas son adecuadas para el análisis de la porosidad. En esta tesis, se ha analizado el efecto de ciclo de curado en el desarrollo de los poros durante la consolidación de preimpregnados Hexply AS4/8552 a bajas presiones mediante moldeo por compresión, en paneles unidireccionales y multiaxiales utilizando tres ciclos de curado diferentes. Dichos ciclos fueron cuidadosamente diseñados de acuerdo a la caracterización térmica y reológica de los preimpregnados. La fracción volumétrica de poros, su forma y distribución espacial se analizaron en detalle mediante tomografía de rayos X. Esta técnica no destructiva ha demostrado su capacidad para analizar la microestructura de materiales compuestos. Se observó, que la porosidad depende en gran medida de la evolución de la viscosidad dinámica a lo largo del ciclo y que la mayoría de la porosidad inicial procedía del aire atrapado durante el apilamiento de las láminas de preimpregnado. En el caso de los laminados multiaxiales, la porosidad también se vio afectada por la secuencia de apilamiento. En general, los poros tenían forma cilíndrica y se estaban orientados en la dirección de las fibras. Además, la proyección de la población de poros a lo largo de la dirección de la fibra reveló la existencia de una estructura celular de un diámetro aproximado de 1 mm. Las paredes de las celdas correspondían con regiones con mayor densidad de fibra mientras que los poros se concentraban en el interior de las celdas. Esta distribución de la porosidad es el resultado de una consolidación no homogenea. Toda esta información es crítica a la hora de optimizar las condiciones de procesado y proporcionar datos de partida para desarrollar herramientas de simulación de los procesos de fabricación de materiales compuestos fuera de autoclave. Adicionalmente, se determinaron ciertas propiedades mecánicas dependientes de la matriz termoestable con objeto de establecer la relación entre condiciones de procesado y las prestaciones mecánicas. En el caso de los laminados unidireccionales, la resistencia interlaminar depende de la porosidad para fracciones volumétricas de poros superiores 1%. Las mismas tendencias se observaron en el caso de GIIc mientras GIc no se vio afectada por la porosidad. En el caso de los laminados multiaxiales se evaluó la influencia de la porosidad en la resistencia a compresión, la resistencia a impacto a baja velocidad y la resistencia a copresión después de impacto. La resistencia a compresión se redujo con el contenido en poros, pero éste no influyó significativamente en la resistencia a compresión despues de impacto ya que quedó enmascarada por otros factores como la secuencia de apilamiento o la magnitud del daño generado tras el impacto. Finalmente, el efecto de las condiciones de fabricación en el proceso de compactación mediante moldeo por compresión en laminados unidireccionales fue simulado mediante el método de los elementos finitos en una primera aproximación para simular la fabricación de materiales compuestos fuera de autoclave. Los parámetros del modelo se obtuvieron mediante experimentos térmicos y reológicos del preimpregnado Hexply AS4/8552. Los resultados obtenidos en la predicción de la reducción de espesor durante el proceso de consolidación concordaron razonablemente con los resultados experimentales. Manufacturing of high performance polymer-matrix composites is normally carried out by means of autoclave using prepreg tapes stacked and consolidated under the simultaneous application of pressure and temperature. High autoclave pressures reduce the porosity in the laminate and ensure excellent mechanical properties. However, this manufacturing route is expensive in terms of capital investment and processing time, hindering its application in many industrial sectors. This fact has driven the demand of alternative out-of-autoclave processing routes. These techniques claim to produce composite parts faster and at lower cost but the mechanical performance is also reduced due to the lower fiber content and to the higher porosity. Corrient numerical models are able to simulate the mechanisms of void growth in polymer-matrix composites processed in autoclave. However these models are restricted to small spherical voids surrounded by a viscous resin. Their validity is not proved for long cylindrical voids in a viscous matrix surrounded by aligned fibers, the standard morphology observed in out-of-autoclave composites. In addition, there is an experimental evidence of the detrimental effect of voids on the mechanical performance of composites but, there is detailed information regarding the influence of curing conditions on the actual volume fraction, shape and spatial distribution of voids within the laminate. The standard techniques of microstructural characterization of composites (optical or electron microscopy, X-ray radiography, ultrasonics) provide information in two dimensions and are not always suitable to determine the porosity or void population. Moreover, they can not provide 3D information. The effect of curing cycle on the development of voids during consolidation of AS4/8552 prepregs at low pressure by compression molding was studied in unidirectional and multiaxial panels. They were manufactured using three different curing cycles carefully designed following the rheological and thermal analysis of the raw prepregs. The void volume fraction, shape and spatial distribution were analyzed in detail by means of X-ray computed microtomography, which has demonstrated its potential for analyzing the microstructural features of composites. It was demonstrated that the final void volume fraction depended on the evolution of the dynamic viscosity throughout the cycle. Most of the initial voids were the result of air entrapment and wrinkles created during lay-up. Differences in the final void volume fraction depended on the processing conditions for unidirectional and multiaxial panels. Voids were rod-like shaped and were oriented parallel to the fibers and concentrated in channels along the fiber orientation. X-ray computer tomography analysis of voids along the fiber direction showed a cellular structure with an approximate cell diameter of 1 mm. The cell walls were fiber-rich regions and porosity was localized at the center of the cells. This porosity distribution within the laminate was the result of inhomogeneous consolidation. This information is critical to optimize processing parameters and to provide inputs for virtual testing and virtual processing tools. In addition, the matrix-controlled mechanical properties of the panels were measured in order to establish the relationship between processing conditions and mechanical performance. The interlaminar shear strength (ILSS) and the interlaminar toughness (GIc and GIIc) were selected to evaluate the effect of porosity on the mechanical performance of unidirectional panels. The ILSS was strongly affected by the porosity when the void contents was higher than 1%. The same trends were observed in the case of GIIc while GIc was insensitive to the void volume fraction. Additionally, the mechanical performance of multiaxial panels in compression, low velocity impact and compression after impact (CAI) was measured to address the effect of processing conditions. The compressive strength decreased with porosity and ply-clustering. However, the porosity did not influence the impact resistance and the coompression after impact strength because the effect of porosity was masked by other factors as the damage due to impact or the laminate lay-up. Finally, the effect of the processing conditions on the compaction behavior of unidirectional AS4/8552 panels manufactured by compression moulding was simulated using the finite element method, as a first approximation to more complex and accurate models for out-of autoclave curing and consolidation of composite laminates. The model parameters were obtained from rheological and thermo-mechanical experiments carried out in raw prepreg samples. The predictions of the thickness change during consolidation were in reasonable agreement with the experimental results.
Resumo:
Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.
Resumo:
We study a cognitive radio scenario in which the network of sec- ondary users wishes to identify which primary user, if any, is trans- mitting. To achieve this, the nodes will rely on some form of location information. In our previous work we proposed two fully distributed algorithms for this task, with and without a pre-detection step, using propagation parameters as the only source of location information. In a real distributed deployment, each node must estimate its own po- sition and/or propagation parameters. Hence, in this work we study the effect of uncertainty, or error in these estimates on the proposed distributed identification algorithms. We show that the pre-detection step significantly increases robustness against uncertainty in nodes' locations.
Resumo:
We address a cognitive radio scenario, where a number of secondary users performs identification of which primary user, if any, is trans- mitting, in a distributed way and using limited location information. We propose two fully distributed algorithms: the first is a direct iden- tification scheme, and in the other a distributed sub-optimal detection based on a simplified Neyman-Pearson energy detector precedes the identification scheme. Both algorithms are studied analytically in a realistic transmission scenario, and the advantage obtained by detec- tion pre-processing is also verified via simulation. Finally, we give details of their fully distributed implementation via consensus aver- aging algorithms.
Resumo:
As embedded systems evolve, problems inherent to technology become important limitations. In less than ten years, chips will exceed the maximum allowed power consumption affecting performance, since, even though the resources available per chip are increasing, frequency of operation has stalled. Besides, as the level of integration is increased, it is difficult to keep defect density under control, so new fault tolerant techniques are required. In this demo work, a new dynamically adaptable virtual architecture (ARTICo3) to allow dynamic and context-aware use of resources is implemented in a high performance Wireless Sensor node (HiReCookie) to perform an image processing application.
Resumo:
El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.
Resumo:
La seguridad y fiabilidad de los procesos industriales son la principal preocupación de los ingenieros encargados de las plantas industriales. Por lo tanto, desde un punto de vista económico, el objetivo principal es reducir el costo del mantenimiento, el tiempo de inactividad y las pérdidas causadas por los fallos. Por otra parte, la seguridad de los operadores, que afecta a los aspectos sociales y económicos, es el factor más relevante a considerar en cualquier sistema Debido a esto, el diagnóstico de fallos se ha convertido en un foco importante de interés para los investigadores de todo el mundo e ingenieros en la industria. Los principales trabajos enfocados en detección de fallos se basan en modelos de los procesos. Existen diferentes técnicas para el modelado de procesos industriales tales como máquinas de estado, árboles de decisión y Redes de Petri (RdP). Por lo tanto, esta tesis se centra en el modelado de procesos utilizando redes de petri interpretadas. Redes de Petri es una herramienta usada en el modelado gráfico y matemático con la habilidad para describir información de los sistemas de una manera concurrente, paralela, asincrona, distribuida y no determinística o estocástica. RdP son también una herramienta de comunicación visual gráfica útil como lo son las cartas de flujo o diagramas de bloques. Adicionalmente, las marcas de las RdP simulan la dinámica y concurrencia de los sistemas. Finalmente, ellas tienen la capacidad de definir ecuaciones de estado específicas, ecuaciones algebraicas y otros modelos que representan el comportamiento común de los sistemas. Entre los diferentes tipos de redes de petri (Interpretadas, Coloreadas, etc.), este trabajo de investigación trata con redes de petri interpretadas principalmente debido a características tales como sincronización, lugares temporizados, aparte de su capacidad para procesamiento de datos. Esta investigación comienza con el proceso para diseñar y construir el modelo y diagnosticador para detectar fallos definitivos, posteriormente, la dinámica temporal fue adicionada para detectar fallos intermitentes. Dos procesos industriales, concretamente un HVAC (Calefacción, Ventilación y Aire Acondicionado) y un Proceso de Envasado de Líquidos fueron usados como banco de pruebas para implementar la herramienta de diagnóstico de fallos (FD) creada. Finalmente, su capacidad de diagnóstico fue ampliada en orden a detectar fallos en sistemas híbridos. Finalmente, un pequeño helicóptero no tripulado fue elegido como ejemplo de sistema donde la seguridad es un desafío, y las técnicas de detección de fallos desarrolladas en esta tesis llevan a ser una herramienta valorada, desde que los accidentes de las aeronaves no tripuladas (UAVs) envuelven un alto costo económico y son la principal razón para introducir restricciones de volar sobre áreas pobladas. Así, este trabajo introduce un proceso sistemático para construir un Diagnosticador de Fallos del sistema mencionado basado en RdR Esta novedosa herramienta es capaz de detectar fallos definitivos e intermitentes. El trabajo realizado es discutido desde un punto de vista teórico y práctico. El procedimiento comienza con la división del sistema en subsistemas para seguido integrar en una RdP diagnosticadora global que es capaz de monitorear el sistema completo y mostrar las variables críticas al operador en orden a determinar la salud del UAV, para de esta manera prevenir accidentes. Un Sistema de Adquisición de Datos (DAQ) ha sido también diseñado para recoger datos durante los vuelos y alimentar la RdP diagnosticadora. Vuelos reales realizados bajo condiciones normales y de fallo han sido requeridos para llevar a cabo la configuración del diagnosticador y verificar su comportamiento. Vale la pena señalar que un alto riesgo fue asumido en la generación de fallos durante los vuelos, a pesar de eso esto permitió recoger datos básicos para desarrollar el diagnóstico de fallos, técnicas de aislamiento, protocolos de mantenimiento, modelos de comportamiento, etc. Finalmente, un resumen de la validación de resultados obtenidos durante las pruebas de vuelo es también incluido. Un extensivo uso de esta herramienta mejorará los protocolos de mantenimiento para UAVs (especialmente helicópteros) y permite establecer recomendaciones en regulaciones. El uso del diagnosticador usando redes de petri es considerado un novedoso enfoque. ABSTRACT Safety and reliability of industrial processes are the main concern of the engineers in charge of industrial plants. Thus, from an economic point of view, the main goal is to reduce the maintenance downtime cost and the losses caused by failures. Moreover, the safety of the operators, which affects to social and economic aspects, is the most relevant factor to consider in any system. Due to this, fault diagnosis has become a relevant focus of interest for worldwide researchers and engineers in the industry. The main works focused on failure detection are based on models of the processes. There are different techniques for modelling industrial processes such as state machines, decision trees and Petri Nets (PN). Thus, this Thesis is focused on modelling processes by using Interpreted Petri Nets. Petri Nets is a tool used in the graphic and mathematical modelling with ability to describe information of the systems in a concurrent, parallel, asynchronous, distributed and not deterministic or stochastic manner. PNs are also useful graphical visual communication tools as flow chart or block diagram. Additionally, the marks of the PN simulate the dynamics and concurrence of the systems. Finally, they are able to define specific state equations, algebraic equations and other models that represent the common behaviour of systems. Among the different types of PN (Interpreted, Coloured, etc.), this research work deals with the interpreted Petri Nets mainly due to features such as synchronization capabilities, timed places, apart from their capability for processing data. This Research begins with the process for designing and building the model and diagnoser to detect permanent faults, subsequently, the temporal dynamic was added for detecting intermittent faults. Two industrial processes, namely HVAC (Heating, Ventilation and Air Condition) and Liquids Packaging Process were used as testbed for implementing the Fault Diagnosis (FD) tool created. Finally, its diagnostic capability was enhanced in order to detect faults in hybrid systems. Finally, a small unmanned helicopter was chosen as example of system where safety is a challenge and fault detection techniques developed in this Thesis turn out to be a valuable tool since UAVs accidents involve high economic cost and are the main reason for setting restrictions to fly over populated areas. Thus, this work introduces a systematic process for building a Fault Diagnoser of the mentioned system based on Petri Nets. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the system into subsystems for further integration into a global PN diagnoser that is able to monitor the whole system and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ) has been also designed for collecting data during the flights and feed PN Diagnoser. Real flights carried out under nominal and failure conditions have been required to perform the diagnoser setup and verify its performance. It is worth noting that a high risk was assumed in the generation of faults during the flights, nevertheless this allowed collecting basic data so as to develop fault diagnosis, isolations techniques, maintenance protocols, behaviour models, etc. Finally, a summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters) and allow establishing recommendations in regulations. The use of the diagnoser by using Petri Nets is considered as novel approach.
Resumo:
Entendemos por inteligencia colectiva una forma de inteligencia que surge de la colaboración y la participación de varios individuos o, siendo más estrictos, varias entidades. En base a esta sencilla definición podemos observar que este concepto es campo de estudio de las más diversas disciplinas como pueden ser la sociología, las tecnologías de la información o la biología, atendiendo cada una de ellas a un tipo de entidades diferentes: seres humanos, elementos de computación o animales. Como elemento común podríamos indicar que la inteligencia colectiva ha tenido como objetivo el ser capaz de fomentar una inteligencia de grupo que supere a la inteligencia individual de las entidades que lo forman a través de mecanismos de coordinación, cooperación, competencia, integración, diferenciación, etc. Sin embargo, aunque históricamente la inteligencia colectiva se ha podido desarrollar de forma paralela e independiente en las distintas disciplinas que la tratan, en la actualidad, los avances en las tecnologías de la información han provocado que esto ya no sea suficiente. Hoy en día seres humanos y máquinas a través de todo tipo de redes de comunicación e interfaces, conviven en un entorno en el que la inteligencia colectiva ha cobrado una nueva dimensión: ya no sólo puede intentar obtener un comportamiento superior al de sus entidades constituyentes sino que ahora, además, estas inteligencias individuales son completamente diferentes unas de otras y aparece por lo tanto el doble reto de ser capaces de gestionar esta gran heterogeneidad y al mismo tiempo ser capaces de obtener comportamientos aún más inteligentes gracias a las sinergias que los distintos tipos de inteligencias pueden generar. Dentro de las áreas de trabajo de la inteligencia colectiva existen varios campos abiertos en los que siempre se intenta obtener unas prestaciones superiores a las de los individuos. Por ejemplo: consciencia colectiva, memoria colectiva o sabiduría colectiva. Entre todos estos campos nosotros nos centraremos en uno que tiene presencia en la práctica totalidad de posibles comportamientos inteligentes: la toma de decisiones. El campo de estudio de la toma de decisiones es realmente amplio y dentro del mismo la evolución ha sido completamente paralela a la que citábamos anteriormente en referencia a la inteligencia colectiva. En primer lugar se centró en el individuo como entidad decisoria para posteriormente desarrollarse desde un punto de vista social, institucional, etc. La primera fase dentro del estudio de la toma de decisiones se basó en la utilización de paradigmas muy sencillos: análisis de ventajas e inconvenientes, priorización basada en la maximización de algún parámetro del resultado, capacidad para satisfacer los requisitos de forma mínima por parte de las alternativas, consultas a expertos o entidades autorizadas o incluso el azar. Sin embargo, al igual que el paso del estudio del individuo al grupo supone una nueva dimensión dentro la inteligencia colectiva la toma de decisiones colectiva supone un nuevo reto en todas las disciplinas relacionadas. Además, dentro de la decisión colectiva aparecen dos nuevos frentes: los sistemas de decisión centralizados y descentralizados. En el presente proyecto de tesis nos centraremos en este segundo, que es el que supone una mayor atractivo tanto por las posibilidades de generar nuevo conocimiento y trabajar con problemas abiertos actualmente así como en lo que respecta a la aplicabilidad de los resultados que puedan obtenerse. Ya por último, dentro del campo de los sistemas de decisión descentralizados existen varios mecanismos fundamentales que dan lugar a distintas aproximaciones a la problemática propia de este campo. Por ejemplo el liderazgo, la imitación, la prescripción o el miedo. Nosotros nos centraremos en uno de los más multidisciplinares y con mayor capacidad de aplicación en todo tipo de disciplinas y que, históricamente, ha demostrado que puede dar lugar a prestaciones muy superiores a otros tipos de mecanismos de decisión descentralizados: la confianza y la reputación. Resumidamente podríamos indicar que confianza es la creencia por parte de una entidad que otra va a realizar una determinada actividad de una forma concreta. En principio es algo subjetivo, ya que la confianza de dos entidades diferentes sobre una tercera no tiene porqué ser la misma. Por otro lado, la reputación es la idea colectiva (o evaluación social) que distintas entidades de un sistema tiene sobre otra entidad del mismo en lo que respecta a un determinado criterio. Es por tanto una información de carácter colectivo pero única dentro de un sistema, no asociada a cada una de las entidades del sistema sino por igual a todas ellas. En estas dos sencillas definiciones se basan la inmensa mayoría de sistemas colectivos. De hecho muchas disertaciones indican que ningún tipo de organización podría ser viable de no ser por la existencia y la utilización de los conceptos de confianza y reputación. A partir de ahora, a todo sistema que utilice de una u otra forma estos conceptos lo denominaremos como sistema de confianza y reputación (o TRS, Trust and Reputation System). Sin embargo, aunque los TRS son uno de los aspectos de nuestras vidas más cotidianos y con un mayor campo de aplicación, el conocimiento que existe actualmente sobre ellos no podría ser más disperso. Existen un gran número de trabajos científicos en todo tipo de áreas de conocimiento: filosofía, psicología, sociología, economía, política, tecnologías de la información, etc. Pero el principal problema es que no existe una visión completa de la confianza y reputación en su sentido más amplio. Cada disciplina focaliza sus estudios en unos aspectos u otros dentro de los TRS, pero ninguna de ellas trata de explotar el conocimiento generado en el resto para mejorar sus prestaciones en su campo de aplicación concreto. Aspectos muy detallados en algunas áreas de conocimiento son completamente obviados por otras, o incluso aspectos tratados por distintas disciplinas, al ser estudiados desde distintos puntos de vista arrojan resultados complementarios que, sin embargo, no son aprovechados fuera de dichas áreas de conocimiento. Esto nos lleva a una dispersión de conocimiento muy elevada y a una falta de reutilización de metodologías, políticas de actuación y técnicas de una disciplina a otra. Debido su vital importancia, esta alta dispersión de conocimiento se trata de uno de los principales problemas que se pretenden resolver con el presente trabajo de tesis. Por otro lado, cuando se trabaja con TRS, todos los aspectos relacionados con la seguridad están muy presentes ya que muy este es un tema vital dentro del campo de la toma de decisiones. Además también es habitual que los TRS se utilicen para desempeñar responsabilidades que aportan algún tipo de funcionalidad relacionada con el mundo de la seguridad. Por último no podemos olvidar que el acto de confiar está indefectiblemente unido al de delegar una determinada responsabilidad, y que al tratar estos conceptos siempre aparece la idea de riesgo, riesgo de que las expectativas generadas por el acto de la delegación no se cumplan o se cumplan de forma diferente. Podemos ver por lo tanto que cualquier sistema que utiliza la confianza para mejorar o posibilitar su funcionamiento, por su propia naturaleza, es especialmente vulnerable si las premisas en las que se basa son atacadas. En este sentido podemos comprobar (tal y como analizaremos en más detalle a lo largo del presente documento) que las aproximaciones que realizan las distintas disciplinas que tratan la violación de los sistemas de confianza es de lo más variado. únicamente dentro del área de las tecnologías de la información se ha intentado utilizar alguno de los enfoques de otras disciplinas de cara a afrontar problemas relacionados con la seguridad de TRS. Sin embargo se trata de una aproximación incompleta y, normalmente, realizada para cumplir requisitos de aplicaciones concretas y no con la idea de afianzar una base de conocimiento más general y reutilizable en otros entornos. Con todo esto en cuenta, podemos resumir contribuciones del presente trabajo de tesis en las siguientes. • La realización de un completo análisis del estado del arte dentro del mundo de la confianza y la reputación que nos permite comparar las ventajas e inconvenientes de las diferentes aproximación que se realizan a estos conceptos en distintas áreas de conocimiento. • La definición de una arquitectura de referencia para TRS que contempla todas las entidades y procesos que intervienen en este tipo de sistemas. • La definición de un marco de referencia para analizar la seguridad de TRS. Esto implica tanto identificar los principales activos de un TRS en lo que respecta a la seguridad, así como el crear una tipología de posibles ataques y contramedidas en base a dichos activos. • La propuesta de una metodología para el análisis, el diseño, el aseguramiento y el despliegue de un TRS en entornos reales. Adicionalmente se exponen los principales tipos de aplicaciones que pueden obtenerse de los TRS y los medios para maximizar sus prestaciones en cada una de ellas. • La generación de un software que permite simular cualquier tipo de TRS en base a la arquitectura propuesta previamente. Esto permite evaluar las prestaciones de un TRS bajo una determinada configuración en un entorno controlado previamente a su despliegue en un entorno real. Igualmente es de gran utilidad para evaluar la resistencia a distintos tipos de ataques o mal-funcionamientos del sistema. Además de las contribuciones realizadas directamente en el campo de los TRS, hemos realizado aportaciones originales a distintas áreas de conocimiento gracias a la aplicación de las metodologías de análisis y diseño citadas con anterioridad. • Detección de anomalías térmicas en Data Centers. Hemos implementado con éxito un sistema de deteción de anomalías térmicas basado en un TRS. Comparamos la detección de prestaciones de algoritmos de tipo Self-Organized Maps (SOM) y Growing Neural Gas (GNG). Mostramos como SOM ofrece mejores resultados para anomalías en los sistemas de refrigeración de la sala mientras que GNG es una opción más adecuada debido a sus tasas de detección y aislamiento para casos de anomalías provocadas por una carga de trabajo excesiva. • Mejora de las prestaciones de recolección de un sistema basado en swarm computing y odometría social. Gracias a la implementación de un TRS conseguimos mejorar las capacidades de coordinación de una red de robots autónomos distribuidos. La principal contribución reside en el análisis y la validación de las mejoras increméntales que pueden conseguirse con la utilización apropiada de la información existente en el sistema y que puede ser relevante desde el punto de vista de un TRS, y con la implementación de algoritmos de cálculo de confianza basados en dicha información. • Mejora de la seguridad de Wireless Mesh Networks contra ataques contra la integridad, la confidencialidad o la disponibilidad de los datos y / o comunicaciones soportadas por dichas redes. • Mejora de la seguridad de Wireless Sensor Networks contra ataques avanzamos, como insider attacks, ataques desconocidos, etc. Gracias a las metodologías presentadas implementamos contramedidas contra este tipo de ataques en entornos complejos. En base a los experimentos realizados, hemos demostrado que nuestra aproximación es capaz de detectar y confinar varios tipos de ataques que afectan a los protocoles esenciales de la red. La propuesta ofrece unas velocidades de detección muy altas así como demuestra que la inclusión de estos mecanismos de actuación temprana incrementa significativamente el esfuerzo que un atacante tiene que introducir para comprometer la red. Finalmente podríamos concluir que el presente trabajo de tesis supone la generación de un conocimiento útil y aplicable a entornos reales, que nos permite la maximización de las prestaciones resultantes de la utilización de TRS en cualquier tipo de campo de aplicación. De esta forma cubrimos la principal carencia existente actualmente en este campo, que es la falta de una base de conocimiento común y agregada y la inexistencia de una metodología para el desarrollo de TRS que nos permita analizar, diseñar, asegurar y desplegar TRS de una forma sistemática y no artesanal y ad-hoc como se hace en la actualidad. ABSTRACT By collective intelligence we understand a form of intelligence that emerges from the collaboration and competition of many individuals, or strictly speaking, many entities. Based on this simple definition, we can see how this concept is the field of study of a wide range of disciplines, such as sociology, information science or biology, each of them focused in different kinds of entities: human beings, computational resources, or animals. As a common factor, we can point that collective intelligence has always had the goal of being able of promoting a group intelligence that overcomes the individual intelligence of the basic entities that constitute it. This can be accomplished through different mechanisms such as coordination, cooperation, competence, integration, differentiation, etc. Collective intelligence has historically been developed in a parallel and independent way among the different disciplines that deal with it. However, this is not enough anymore due to the advances in information technologies. Nowadays, human beings and machines coexist in environments where collective intelligence has taken a new dimension: we yet have to achieve a better collective behavior than the individual one, but now we also have to deal with completely different kinds of individual intelligences. Therefore, we have a double goal: being able to deal with this heterogeneity and being able to get even more intelligent behaviors thanks to the synergies that the different kinds of intelligence can generate. Within the areas of collective intelligence there are several open topics where they always try to get better performances from groups than from the individuals. For example: collective consciousness, collective memory, or collective wisdom. Among all these topics we will focus on collective decision making, that has influence in most of the collective intelligent behaviors. The field of study of decision making is really wide, and its evolution has been completely parallel to the aforementioned collective intelligence. Firstly, it was focused on the individual as the main decision-making entity, but later it became involved in studying social and institutional groups as basic decision-making entities. The first studies within the decision-making discipline were based on simple paradigms, such as pros and cons analysis, criteria prioritization, fulfillment, following orders, or even chance. However, in the same way that studying the community instead of the individual meant a paradigm shift within collective intelligence, collective decision-making means a new challenge for all the related disciplines. Besides, two new main topics come up when dealing with collective decision-making: centralized and decentralized decision-making systems. In this thesis project we focus in the second one, because it is the most interesting based on the opportunities to generate new knowledge and deal with open issues in this area, as well as these results can be put into practice in a wider set of real-life environments. Finally, within the decentralized collective decision-making systems discipline, there are several basic mechanisms that lead to different approaches to the specific problems of this field, for example: leadership, imitation, prescription, or fear. We will focus on trust and reputation. They are one of the most multidisciplinary concepts and with more potential for applying them in every kind of environments. Besides, they have historically shown that they can generate better performance than other decentralized decision-making mechanisms. Shortly, we say trust is the belief of one entity that the outcome of other entities’ actions is going to be in a specific way. It is a subjective concept because the trust of two different entities in another one does not have to be the same. Reputation is the collective idea (or social evaluation) that a group of entities within a system have about another entity based on a specific criterion. Thus, it is a collective concept in its origin. It is important to say that the behavior of most of the collective systems are based on these two simple definitions. In fact, a lot of articles and essays describe how any organization would not be viable if the ideas of trust and reputation did not exist. From now on, we call Trust an Reputation System (TRS) to any kind of system that uses these concepts. Even though TRSs are one of the most common everyday aspects in our lives, the existing knowledge about them could not be more dispersed. There are thousands of scientific works in every field of study related to trust and reputation: philosophy, psychology, sociology, economics, politics, information sciences, etc. But the main issue is that a comprehensive vision of trust and reputation for all these disciplines does not exist. Every discipline focuses its studies on a specific set of topics but none of them tries to take advantage of the knowledge generated in the other disciplines to improve its behavior or performance. Detailed topics in some fields are completely obviated in others, and even though the study of some topics within several disciplines produces complementary results, these results are not used outside the discipline where they were generated. This leads us to a very high knowledge dispersion and to a lack in the reuse of methodologies, policies and techniques among disciplines. Due to its great importance, this high dispersion of trust and reputation knowledge is one of the main problems this thesis contributes to solve. When we work with TRSs, all the aspects related to security are a constant since it is a vital aspect within the decision-making systems. Besides, TRS are often used to perform some responsibilities related to security. Finally, we cannot forget that the act of trusting is invariably attached to the act of delegating a specific responsibility and, when we deal with these concepts, the idea of risk is always present. This refers to the risk of generated expectations not being accomplished or being accomplished in a different way we anticipated. Thus, we can see that any system using trust to improve or enable its behavior, because of its own nature, is especially vulnerable if the premises it is based on are attacked. Related to this topic, we can see that the approaches of the different disciplines that study attacks of trust and reputation are very diverse. Some attempts of using approaches of other disciplines have been made within the information science area of knowledge, but these approaches are usually incomplete, not systematic and oriented to achieve specific requirements of specific applications. They never try to consolidate a common base of knowledge that could be reusable in other context. Based on all these ideas, this work makes the following direct contributions to the field of TRS: • The compilation of the most relevant existing knowledge related to trust and reputation management systems focusing on their advantages and disadvantages. • We define a generic architecture for TRS, identifying the main entities and processes involved. • We define a generic security framework for TRS. We identify the main security assets and propose a complete taxonomy of attacks for TRS. • We propose and validate a methodology to analyze, design, secure and deploy TRS in real-life environments. Additionally we identify the principal kind of applications we can implement with TRS and how TRS can provide a specific functionality. • We develop a software component to validate and optimize the behavior of a TRS in order to achieve a specific functionality or performance. In addition to the contributions made directly to the field of the TRS, we have made original contributions to different areas of knowledge thanks to the application of the analysis, design and security methodologies previously presented: • Detection of thermal anomalies in Data Centers. Thanks to the application of the TRS analysis and design methodologies, we successfully implemented a thermal anomaly detection system based on a TRS.We compare the detection performance of Self-Organized- Maps and Growing Neural Gas algorithms. We show how SOM provides better results for Computer Room Air Conditioning anomaly detection, yielding detection rates of 100%, in training data with malfunctioning sensors. We also show that GNG yields better detection and isolation rates for workload anomaly detection, reducing the false positive rate when compared to SOM. • Improving the performance of a harvesting system based on swarm computing and social odometry. Through the implementation of a TRS, we achieved to improve the ability of coordinating a distributed network of autonomous robots. The main contribution lies in the analysis and validation of the incremental improvements that can be achieved with proper use information that exist in the system and that are relevant for the TRS, and the implementation of the appropriated trust algorithms based on such information. • Improving Wireless Mesh Networks security against attacks against the integrity, confidentiality or availability of data and communications supported by these networks. Thanks to the implementation of a TRS we improved the detection time rate against these kind of attacks and we limited their potential impact over the system. • We improved the security of Wireless Sensor Networks against advanced attacks, such as insider attacks, unknown attacks, etc. Thanks to the TRS analysis and design methodologies previously described, we implemented countermeasures against such attacks in a complex environment. In our experiments we have demonstrated that our system is capable of detecting and confining various attacks that affect the core network protocols. We have also demonstrated that our approach is capable of rapid attack detection. Also, it has been proven that the inclusion of the proposed detection mechanisms significantly increases the effort the attacker has to introduce in order to compromise the network. Finally we can conclude that, to all intents and purposes, this thesis offers a useful and applicable knowledge in real-life environments that allows us to maximize the performance of any system based on a TRS. Thus, we deal with the main deficiency of this discipline: the lack of a common and complete base of knowledge and the lack of a methodology for the development of TRS that allow us to analyze, design, secure and deploy TRS in a systematic way.
Resumo:
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper
Resumo:
Retrovirus assembly and maturation involve folding and transport of viral proteins to the virus assembly site followed by subsequent proteolytic cleavage of the Gag polyprotein within the nascent virion. We report that inhibiting proteasomes severely decreases the budding, maturation, and infectivity of HIV. Although processing of the Env glycoproteins is not changed, proteasome inhibitors inhibit processing of Gag polyprotein by the viral protease without affecting the activity of the HIV-1 viral protease itself, as demonstrated by in vitro processing of HIV-1 Gag polyprotein Pr55. Furthermore, this effect occurs independently of the virus release function of the HIV-1 accessory protein Vpu and is not limited to HIV-1, as proteasome inhibitors also reduce virus release and Gag processing of HIV-2. Electron microscopy analysis revealed ultrastructural changes in budding virions similar to mutants in the late assembly domain of p6gag, a C-terminal domain of Pr55 required for efficient virus maturation and release. Proteasome inhibition reduced the level of free ubiquitin in HIV-1-infected cells and prevented monoubiquitination of p6gag. Consistent with this, viruses with mutations in PR or p6gag were resistant to detrimental effects mediated by proteasome inhibitors. These results indicate the requirement for an active proteasome/ubiquitin system in release and maturation of infectious HIV particles and provide a potential pharmaceutical strategy for interfering with retrovirus replication.