990 resultados para PROTEIN FAMILIES
Resumo:
Acinetobacter baumannii is a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability of A. baumannii to survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of the A. baumannii biofilm-associated protein (Bap) in 24 carbapenem-resistant A. baumannii ST92 strains isolated from a single institution over a 10-year period. The bap gene was highly prevalent, with 22/24 strains being positive for bap by PCR. Partial sequencing of bap was performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968 clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, the bapMS1968 gene was cloned, and its expression in a recombinant Escherichia coli strain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority of A. baumannii strains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positive A. baumannii strains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth by A. baumannii clinical isolates.
Resumo:
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaHCR) and a hydrophobic region (UpaHHR). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein.
Resumo:
Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.
Resumo:
The Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.
Resumo:
Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest β-helix as the predominant structure in the large N-terminal passenger (α) domain and a 12-strand β-barrel for the C-terminal β-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.
Resumo:
Interactions of chemicals with the microtubular network of cells may lead to genotoxicity. Micronuclei (MN) might be caused by interaction of metals with tubulin and/or kinesin. The genotoxic effects of inorganic lead and mercury salts were studied using the MN assay and the CREST analysis in V79 Chinese hamster fibroblasts. Effects on the functional activity of motor protein systems were examined by measurement of tubulin assembly and kinesin-driven motility. Lead and mercury salts induced MN dose-dependently. The no-effect-concentration for MN induction was 1.1 μM PbCl2, 0.05 μM Pb(OAc)2 and 0.01 μM HgCl2. The in vitro results obtained for PbCl2 correspond to reported MN induction in workers occupationally exposed to lead, starting at 1.2 μM Hg(II) (Vaglenov et al., 2001, Environ. Health Perspect. 109, 295-298). The CREST Analysis indicate aneugenic effects of Pb(II) and aneugenic and additionally clastogenic effects of Hg(II). Lead (chloride, acetate, and nitrate) and mercury (chloride and nitrate) interfered dose-dependently with tubulin assembly in vitro. The no-effect-concentration for lead salts in this assay was 10 μM. Inhibition of tubulin assembly by mercury started at 2 μM. The gliding velocity of microtubules along immobilised kinesin molecules was affected by 25 μM Pb(NO3)2 and 0.1 μM HgCl2 in a dose-dependent manner. Our data support the hypothesis that lead and mercury genotoxicity may result, at least in part, via disturbance of chromosome segregation via interaction with cytoskeletal proteins.
Potential role of EPB41L3 (Protein 4.1B/Dal-1) as a target for treatment of advanced prostate cancer
Resumo:
Background: Loss of erythrocyte membrane protein band 4.1-like 3 (EPB41L3; aliases: protein 4.1B, differentially expressed in adenocarcinoma of the lung-1 (Dal-1)) expression has been implicated in tumor progression. Objective: To evaluate literature describing the role of EPB41L3 in tumorigenesis and metastasis, and to consider whether targeting this gene would be useful in the treatment of prostate cancer. Methods: A literature review of studies describing EPB41L3 and its aliases was conducted. Online databases (NCBI, SwissProt) were also interrogated to collect further data. Results/conclusion: A growing body of evidence supports a role for loss of EPB41L3 in tumor progression, including in prostate cancer. Therapeutic strategies that could be harnessed to upregulate EPB41L3 gene expression in prostate cancer cells are currently being developed.
Resumo:
Prevalence of protein-energy malnutrition (PEM), food intake inadequacy and associated health-related outcomes in morbidly obese (Body Mass Index ≥ 40 kg/m2) acute care patients are unknown. This study reports findings in morbidly obese participants from the Australasian Nutrition Care Day Survey (ANCDS) conducted in 2010. The ANCDS was a cross-sectional survey involving acute care patients from 56 Australian and New Zealand hospitals. Hospital-based dietitians evaluated participants’ nutritional status (defined by Subjective Global Assessment, SGA) and 24-hour food intake (as 0%, 25%, 50%, 75%, and 100% of the offered food). Three months later, outcome data, including length of stay (LOS) and 90-day in-hospital mortality, were collected. Of the 3122 participants, 4% (n = 136) were morbidly obese (67% females, 55 ± 14 years, BMI: 48 ± 8 kg/m2). Eleven percent (n = 15) of the morbidly obese patients were malnourished, and most (n = 11/15, 73%)received standard hospital diets without additional nutritional support. Malnourished morbidly obese patients had significantly longer LOS and greater 90-day in-hospital mortality than well-nourished counterparts (23 days vs. 9 days, p = 0.036; 14% vs. 0% mortality, p = 0.011 respectively). Thirteen morbidly obese patients (10%) consumed only 25% of the offered meals with a significantly greater proportion of malnourished (n = 4, 27%) versus well-nourished (n = 9, 7%) (p = 0.018). These results provide new knowledge on the prevalence of PEM and poor food intake in morbidly obese patients in Australian and New Zealand hospitals. For the first time internationally, the study establishes that PEM is significantly associated with negative outcomes in morbidly obese patients and warrants timely nutritional support during hospitalisation.
Resumo:
We have developed a new protein microarray (Immuno-Flow Protein Platform, IFPP) that utilizes a porous nitrocellulose (NC) membrane with printed spots of capture probes. The sample is pumped actively through the NC membrane, to enhance binding efficiency and introduce stringency. Compared to protein microarrays assayed with the conventional incubation-shaking method the rate of binding is enhanced on the IFPP by at least a factor of 10, so that the total assay time can be reduced drastically without compromising sensitivity. Similarly, the sensitivity can be improved. We demonstrate the detection of 1 pM of C-reactive protein (CRP) in 70 mu L of plasma within a total assay time of 7 min. The small sample and reagent volumes, combined with the speed of the assay, make our IFPP also well-suited for a point-of-care/near-patient setting. The potential clinical application of the IFPP is demonstrated by validating CRP detection both in human plasma and serum samples against standard clinical laboratory methods.
Resumo:
Background: Cardiovascular disease is the leading cause of death in the world. Human C-reactive protein (CRP) has been used in the risk assessment of coronary events. Human saliva mirrors the body's health and well-being and is non-invasive, easy to collect and ideal for third world countries as well as for large patient screening. The aim was to establish a saliva CRP reference range and to demonstrate the clinical utility of salivary CRP levels in assessing the coronary events in a primary health care setting. Methods: We have used a homogeneous bead based assay to detect CRP levels in human saliva. We have developed a rapid 15 min (vs 90 min), sequential, one-step assay to detect CRP in saliva. Saliva was collected from healthy volunteers (n = 55, ages 20-70 years) as well as from cardiac patients (n = 28, ages 43-86 years). Results: The assay incubation time was optimised from 90 min to 15 mm and generated a positive correlation (n = 29, range 10-2189 pg/mL, r2 = 0.94; Passing Bablok slope 0.885. Intercept 0, p>0.10), meaning we could decrease the incubation time and produce equivalent results with confidence. The mean CRP level in the saliva of healthy human volunteers was 285 pg/mL and in cardiac patients was 1680 pg/mL (p<0.01). Analysis of CRP concentrations in paired serum and saliva samples from cardiac patients gave a positive correlation (r2 = 0.84, p<0.001) and the salivary CRP concentration capable of distinguishing healthy from diseased patients. Conclusions: The results suggest that this minimally invasive, rapid and sensitive assay will be useful in large patient screening studies for risk assessment of coronary events. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Flailing in a maelstrom of muddy water, a teenager being swept along Toowoomba's shopping strip has become a reason for hope for the loved ones of the 12 people still missing in the devastating Queensland floods...
Resumo:
"Flanked by her husband, Matthew, and her two surviving children, Maddison and Jacob, Stacy Keep yesterday began the heart-wrenching task of burying her family."
Resumo:
Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b5, whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.