977 resultados para POLYMER BLEND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the effect of substitution of water by heavy water in a polymer solution of polystyrene (molecular weight = 13000) and acetone. A critical double point (CDP), at which the upper and the lower partially-miscible regions merge, occurs at nearly the same coordinates as for the system [polystyrene + acetone + water]. The shape of the critical line for [polystyrene + acetone + heavy water] is highly asymmetric. An explanation for the occurrence of the water-induced CDP in [polystyrene + acetone] is advanced in terms of the interplay between contact energy dissimilarity and free-volume disparity of the polymer and the solvent. The question of the possible existence of a one-phase hole in an hourglass phase diagram is addressed in [polystyrene + acetone + water]. Our data exclude such a possibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show analytically that in dilute solutions of high molecular weight polymers, a collapse transition of the chain can be induced by proximity to the critical point of the solvent. The transition is driven by the fluctuations in the medium, which lead to an effective attractive interaction of long range between different parts of the polymer. At the critical point itself, however, the chain adopts the same average conformations that characterize its size in the off-critical limit. In other words, on approach to the critical point, the polymer is found first to contract and collapse, and then subsequently to return to its original dimensions. This behavior has recently been observed in simulations of polymer-solvent mixtures near the lower critical solution temperature of the system, and it is also known to be characteristic of solutions of polymers in bicomponent solvent mixtures near the critical consolute point of the two solvents. (C) 1999 American Institute of Physics. [S0021-9606(99)50431-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on solid state rechargeable magnesium batteries are considered important similar to lithium batteries. In view of negligible hazards and less reactivity of the magnesium, in comparison with lithium, studies on rechargeable magnesium batteries are expected to have a wide scope in future. Solid polymer electrolytes, which conduct Mg2+ ions and reversibility of a Mg/Mg2+ couple are essential components of the studies. In the present investigations, the existence of reversibility of a Mg/Mg2+ couple in a gel polymer electrolyte (GPE) medium is established for the first time in literature. Results obtained by electrochemical impedance spectroscopy and cyclic voltammetry on Mg/GPE/Mg, SS/GPE/SS symmetrical cells show evidence for the reversibility. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results on the performance of a 25 cm(2) liquid-feed solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC), operating under near-ambient conditions, are reported. The SPE-DMFC can yield a maximum power density of c. 200 mW cm(-2) at 90 C while operating with 1 M aqueous methanol and oxygen under ambient pressure. While operating the SPE-DMFC under similar conditions with air, a maximum power density of ca. 100 mW cm(-2) is achieved. Analysis of the electrode reaction kinetics parameters on the methanol electrode suggests that the reaction mechanism for methanol oxidation remains invariant with temperature. Durability data on the SPE-DMFC at an operational current density of 100 mA cm(-2) have also been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on redox supercapacitors employing electronically conducting polymers are of great importance for hybrid power sources and pulse power applications. In the present study, polyaniline (PANI) has been potentiodynamically deposited on stainless steel substrate and characterized in a gel polymer electrolyte (GPE). Use of the GPE facilitates a voltage limit of the capacitor to 1 V, instead of 0.75 V in aqueous electrolytes. From charge-discharge studies of the solid-state PANI capacitors, a specific capacitance of 250 F g(-1) has been obtained at a specific power of 7.5 kW kg(-1) of PANI. The values of specific capacitance and specific power are considerably higher than those reported in the literature. High energy and high power characteristics of the PANI are presented. (C) 2002 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion conduction and thermal properties of composite solid polymer electrolyte (SPE) comprising Poly(ethylene) Glycol (PEG, mol wt. 2000), lithium perchlorate (LiClO4) and insulating Mn0.03Zn0.97Al2O4 nanoparticle fillers were studied by complex impedance analysis and DSC techniques. The average size of the nanoparticles was determined by powder X-ray diffraction (XRD) using Scherrer's equation and was found to be similar to 8 nm. The same was also determined by TEM imaging and found to be similar to 12 nm. The glass transition temperature T, as measured by differential scanning calorimeter (DSC), showed a minimum at 5 mol% of narroparticles. Fractional crystallinity was determined using DSC. NMR was used to deter-mine crystallinity of a pure PEG sample, which was then used as the standard. Fractional crystallinity X. was the lowest for 5 mol% and beyond. The ionic conductivity of the composite polymer electrolyte containing 5 mol% Mn0.03Zn0.97Al2O4 nanoparticles was found to be 1.82 x 10(-5) S/cm, while for the pristine one, it was 7.27 x 10(-7) S/cm at room temperature. As a function of nanoparticle content, conductivity was observed to go through two maxima, one at around 5 mol% and another shallower one at around 12 mol%. The temperature dependence of conductivity could be divided into two regions, one consistent with Arrhenius behaviour and the other with VTF. We conclude that the enhancement of ionic conductivity on the addition of Mn0.03Zn0.97Al2O4 nanoparticles is a result of reduction in both the T, and the crystallinity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary and ternary blends of nylon-6/low density polyethylene (nylon-6/LDPE) and Nylon-6/LDPE/poly(ethylene-co-glycidyl methacrylate) were prepared by melt mixing. The blends exhibit two phase morphology with LDPE dispersed in the form of spherical domains in the nylon-6 matrix. The mechanical properties of the blends were measured by standard methods. It is shown that the use of the epoxy copolymer as a compatibilizer improves the impact strength of the blend as compared to nylon-6, which is attributed to better stress transfer across the interface due to the compatibilizer. The data for each mechanical property were also fitted into a best fit model equation and the method of steepest ascent was applied to arrive at the optimum composition of the blend for that property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the breaking of a polymer molecule which is fixed at one end and is acted upon by a force at the other. The polymer is assumed to be a linear chain joined together by bonds which satisfy the Morse potential. The applied force is found to modify the Morse potential so that the minimum becomes metastable. Breaking is just the decay of this metastable bond, by causing it to go over the barrier. Increasing the force causes the potential to become more and more distorted and eventually leads to the disappearance of the barrier. The limiting force at which the barrier disappears is D(e)a/2,D-e with a the parameters characterizing the Morse potential. The rate of breaking is first calculated using multidimensional quantum transition state theory. We use the harmonic approximation to account for vibrations of all the units. It includes tunneling contributions to the rate, but is valid only above a certain critical temperature. It is possible to get an analytical expression for the rate of breaking. We have calculated the rate of breaking for a model, which mimics polyethylene. First we calculate the rate of breaking of a single bond, without worrying about the other bonds. Inclusion of other bonds under the harmonic approximation is found to lower this rate by at the most one order of magnitude. Quantum effects are found to increase the rate of breaking and are significant only at temperatures less than 150 K. At 300 K, the calculations predict a bond in polyethylene to have a lifetime of only seconds at a force which is only half the limiting force. Calculations were also done using the Lennard-Jones potential. The results for Lennard-Jones and Morse potentials were rather different, due to the different long-range behaviors of the two potentials. A calculation including friction was carried out, at the classical level, by assuming that each atom of the chain is coupled to its own collection of harmonic oscillators. Comparison of the results with the simulations of Oliveira and Taylor [J. Chem. Phys. 101, 10 118 (1994)] showed the rate to be two to three orders of magnitude higher. As a possible explanation of discrepancy, we consider the translational motion of the ends of the broken chains. Using a continuum approximation for the chain, we find that in the absence of friction, the rate of the process can be limited by the rate at which the two broken ends separate from one another and the lowering of the rate is at the most a factor of 2, for the parameters used in the simulation (for polyethylene). In the presence of friction, we find that the rate can be lowered by one to two orders of magnitude, making our results to be in reasonable agreement with the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugated polymers are intensively pursued as candidate materials for emission and detection devices with the optical range of interest determined by the chemical structure. On the other hand the optical range for emission and detection can also be tuned by size selection in semiconductor nanoclusters. The mechanisms for charge generation and separation upon optical excitation, and light emission are different for these systems. Hybrid systems based on these different class of materials reveal interesting electronic and optical properties and add further insight into the individual characteristics of the different components. Multilayer structures and blends of these materials on different substrates were prepared for absorption, photocurrent (Iph), photoluminescence (PL) and electroluminscence (EL) studies. Polymers chosen were derivatives of polythiophene (PT) and polyparaphenylenevinylene (PPV) along with nanoclusters of cadmium sulphide of average size 4.4 nm (CdS-44). The photocurrent spectral response in these systems followed the absorption response around the band edges for each of the components and revealed additional features, which depended on bias voltage, thickness of the layers and interfacial effects. The current-voltage curves showed multi-component features with emission varying for different regimes of voltage. The emission spectral response revealed additive features and is discussed in terms of excitonic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pi-electron rich supramolecular polymer as an efficient fluorescent sensor for electron deficient nitroaromatic explosives has been synthesized, and the role of H-bonding in dramatic amplification of sensitivity/fluorescence quenching efficiency in the solid state has been established.