996 resultados para PHYTOPLANKTON
Resumo:
The extraction and use of metals has been the mainstay for the sustained development and progress of a nation. Metals, though fairly stable in the natural environment are found in trace quantities in water bodies. Attention has therefore been focused to identify the metals that impair the water quality. In the last few decades the concern about the fate of these metals in the aquatic system has been gaining momentum, particularly in the industrial belts. The disasters caused by metal poisoning in recent times have prompted an indepth study of the interaction of metals with aquatic biota. Kerala, basically an agriculture oriented state has witnessed the upsurgence of various industries as a part of the nationwide economic development programme. Cochin has been identified as the industrial capital of the state.The present study is an attempt towards a better understanding of the metal-phytoplankton interactions with special reference to the physiological changes in the species. various parameters such as temperature, salinity, pH, nutrients, number of cells, photosynthetic pigments, carbohydrates, protein and lipid are studied to highlight the complexity of metal..phytoplankton interaction
Resumo:
The thesis entitled Growth Response of Phytoplankton Exposed to Industrial Effluents in River Periyar. The present investigation has been conducted in two phases: field observation and algal assays. The monthly distribution of hydrographic features is represented graphically. The sampling year has been divided into three seasons: monsoon (June to September), postmonsoon (October to January) and premonsoon (February to May). The data were analysed using Student's t-test to find whether there was any significant difference between surface and bottom samples. The spatial variation of the variables was assessed by Page's L (trend) test (Ray Meddis, 1975). The standard procedure for algal toxicity test (Ward and Parrish, 1982) was followed throughout the study. Statistical analysis (Page's L (trend) test) showed that there was no significant difference in Secchi disc transparency between the stations. The field observations as well as the laboratory assays confirm that the rate of discharge in river Periyar during premonsoon is insufficient to effect dilution of wastewater received in the industrial zone.
Resumo:
The present study was undertaken to observe the phytoplankton (distones,dinoflageliates,and blue green algae) blooms occurring along the south west coast of India at various seasons from February 1982 to august 1984.The centers selected for collection and observation were off Quilon, off Alleppey ,off Calicut. A total number of 25 phytoplankton blooms were studied. Characterisation of phytoplankton blooms include observing the cell counts from the day of its appearance to its day of disappearance. The appearance ,duration and locality of the blooms were also noted
Resumo:
The present study is concentrated on a composite group of algae of phy— toplankton. The algae in the aquatic environment are the most important of all ch1orophy1l- bearing life on earth on which considerable attention is being given on account of their supreme status in the aquatic food chain. Though the higher plants serve as the major primary producers in the terrestrial biocycle, the primary producers in the aquatic ecosystem especially in the marine environment-" assume unparalleled significance ‘because of their c'ontribution.to the high magnitude of production generating the fishery resources
Resumo:
This thesis deals with the results oi’ investigations on phytoplankton productivity and related aspects conducted in various ecoaystms such as estuarine, inshore and oceanic enviroments and certain special ecosytans including the pu.-awn culture fields and associated many-eves, mud bank and the seas around the Andaman-Nicobar Islands. This study also includes the qualitative and quantitative variations of phytoplankton production, their seasonal abundance, factors controlling the same and the magnitude of the potential resources derived 1!:-om it
Resumo:
The influence of salinity on phytoplankton varies widely, because different species have different salinity preferences. Like marine and aquatic species, many phytoplankton species exhibit tolerance to certain salinity, beyond which, it can inhibit their growth. Light is the most important factor that influences phytoplankton growth. In aquatic environments (lakes, sea or estuary) the light incident on the surface is rapidly reduced exponentially with depth (Krik, 1994). In estuaries, the major factor influencing the light availability is the suspended particulate matter, which attenuates and scatters the light. The light changes with time of the day and the season, affecting the amount of light penetrating the water column. Similarly, biological factor like copepod grazing is a major factor influencing the standing crop of phytoplankton. The copepod can actively graze up to 75% of the phytoplankton biomass in a tropical estuary (Tan et. al., 2004). It is in the context that the present study investigates the salinity, light (physical factors) and copepod grazing (biological factor) phytoplankton as the factors controlling phytoplankton growth and distribution
Resumo:
Procesos hidrodinámicos determinan, en un alto grado la calidad del agua en embalse, sin embargo dichos procesos han sido tradicionalmente olvidados en la gestión de embalse. En esta tesis se presentan evidencias de los principales procesos hidrodinámicos que ocurren en un embalse Mediterráneo a escala de cuenca a través de campañas experimentales y modelización numérica; y su influencia en la dinámica de poblaciones de fitoplancton. Dichos procesos son principalmente la generación de ondas internas o secas y la intrusión del río. La presencia de viento periódico genera secas forzadas, amplificando los modos cercanos al periodo del viento, de manera que modos verticales altos, considerados como raros en la naturaleza, tienden a dominar en el sistema.
Resumo:
Se ha estudiado la dinámica del fitoplancton en las lagunas costeras de Aiguamolls de l'Empordà. El fitoplancton esta sujeto principalmente al control "bottom-up", la variabilidad hidrológica y la disponibilidad de nutrientes tienen una mayor influencia en la composición y distribución de tamaños del fitoplancton, que el zooplancton. La concentración de materia orgánica disuelta es el factor ambiental más correlacionado con el crecimiento de la biomasa fitoplanctónica. Dada la proximidad entre las lagunas costeras y el mar, donde la ocurrencia de Proliferaciones de Algas Nocivas es cada vez más frecuente, se realizan un inventario general de las especies más abundantes del fitoplancton y se llevan a cabo análisis extensivos de la toxicidad. La mayoría de especies de dinoflagelados encontradas son potencialmente nocivas. Hay pocas especies en común entre el mar y las lagunas, sin embargo, existen especies productoras de PANs características de los ambientes lagunares.
Resumo:
Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low.
Resumo:
This study aims to elucidate the key mechanisms controlling phytoplankton growth and decay within the Thames basin through the application of a modified version of an established river-algal model and comparison with observed stream water chlorophyll-a concentrations. The River Thames showed a distinct simulated phytoplankton seasonality and behaviour having high spring, moderate summer and low autumn chlorophyll-a concentrations. Three main sections were identified along the River Thames with different phytoplankton abundance and seasonality: (i) low chlorophyll-a concentrations from source to Newbridge; (ii) steep concentration increase between Newbridge and Sutton; and (iii) high concentrations with a moderate increase in concentration from Sutton to the end of the study area (Maidenhead). However, local hydrologic (e.g. locks) and other conditions (e.g. radiation, water depth, grazer dynamics, etc.) affected the simulated growth and losses. The model achieved good simulation results during both calibration and testing through a range of hydrological and nutrient conditions. Simulated phytoplankton growth was controlled predominantly by residence time, but during medium–low flow periods available light, water temperature and herbivorous grazing defined algal community development. These results challenge the perceived importance of in-stream nutrient concentrations as the perceived primary control on phytoplankton growth and death.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful information on the time-dependent biomass flux in the pelagic ecosystem.
Resumo:
The absorption coefficient of a substance distributed as discrete particles in suspension is less than that of the same material dissolved uniformly in a medium—a phenomenon commonly referred to as the flattening effect. The decrease in the absorption coefficient owing to flattening effect depends on the concentration of the absorbing pigment inside the particle, the specific absorption coefficient of the pigment within the particle, and on the diameter of the particle, if the particles are assumed to be spherical. For phytoplankton cells in the ocean, with diameters ranging from less than 1 µm to more than 100 µm, the flattening effect is variable, and sometimes pronounced, as has been well documented in the literature. Here, we demonstrate how the in vivo absorption coefficient of phytoplankton cells per unit concentration of its major pigment, chlorophyll a, can be used to determine the average cell size of the phytoplankton population. Sensitivity analyses are carried out to evaluate the errors in the estimated diameter owing to potential errors in the model assumptions. Cell sizes computed for field samples using the model are compared qualitatively with indirect estimates of size classes derived from high performance liquid chromatography data. Also, the results are compared quantitatively against measurements of cell size in laboratory cultures. The method developed is easy-to-apply as an operational tool for in situ observations, and has the potential for application to remote sensing of ocean colour data.
Resumo:
A small group of phytoplankton species that produce toxic or allelopathic chemicals has a significant effect on plankton dynamics in marine ecosystems. The species of non-toxic phytoplankton, which are large in number, are affected by the toxin-allelopathy of those species. By analysis of the abundance data of marine phytoplankton collected from the North-West coast of the Bay of Bengal, an empirical relationship between the abundance of the potential toxin-producing species and the species diversity of the non-toxic phytoplankton is formulated. A change-point analysis demonstrates that the diversity of non-toxic phytoplankton increases with the increase of toxic species up to a certain level. However, for a massive increase of the toxin-producing species the diversity of phytoplankton at species level reduces gradually. Following the results, a deterministic relationship between the abundance of toxic phytoplankton and the diversity of non-toxic phytoplankton is developed. The abundance–diversity relationship develops a unimodal pathway through which the abundance of toxic species regulates the diversity of phytoplankton. These results contribute to the current understanding of the coexistence and biodiversity of phytoplankton, the top-down vs. bottom-up debate, and to that of abundance–diversity relationship in marine ecosystems.