963 resultados para PCR and real time PCR
Resumo:
It has been proposed that gonadotropins and/or gonadotropin releasing hormone (GnRH) could be involved in the pathophysiology of the side effects after spaying in bitches, such as urinary incontinence and an increased production of a woolly undercoat. In order to provide tools to investigate the role of these hormones in dogs we developed immunohistochemical techniques and real-time RT-PCR to study whether GnRH-, LH-, and FSH-receptors exist in canine skin and urinary bladder. Tissue samples from the skin of the flank region and the ventral midline of the urinary bladder from euthanised dogs were examined. We were able to quantify mRNA expression of GnRH-, FSH-, and LH-receptors in canine skin and bladder biopsies with a high primer efficacy. Immunohistochemical studies showed that GnRH-, FSH-, and LH-receptors are expressed in vessel walls, the epidermis, the hair follicle and in sebaceous and sweat glands in canine skin and in transitional epithelium, and smooth muscle tissue in the urinary bladder. Our data provide the fundamentals to examine the distribution of FSH-, LH-, and GnRH-receptors in canine skin and urinary bladder and to assess gene activity at the transcriptional level by real-time RT-PCR.
Resumo:
In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues.
Resumo:
This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.
Resumo:
In this report, we attempt to define the capabilities of the infrared satellite remote sensor, Multifunctional Transport Satellite-2 (MTSAT-2) (i.e. a geosynchronous instrument), in characterizing volcanic eruptive behavior in the highly active region of Indonesia. Sulfur dioxide data from NASA's Ozone Monitoring Instrument (OMI) (i.e. a polar orbiting instrument) are presented here for validation of the processes interpreted using the thermal infrared datasets. Data provided from two case studies are analyzed specifically for eruptive products producing large thermal anomalies (i.e. lava flows, lava domes, etc.), volcanic ash and SO2 clouds; three distinctly characteristic and abundant volcanic emissions. Two primary methods used for detection of heat signatures are used and compared in this report including, single-channel thermal radiance (4-µm) and the normalized thermal index (NTI) algorithm. For automated purposes, fixed thresholds must be determined for these methods. A base minimum detection limit (MDL) for single-channel thermal radiance of 2.30E+05 Wm- 2sr-1m-1 and -0.925 for NTI generate false alarm rates of 35.78% and 34.16%, respectively. A spatial comparison method, developed here specifically for use in Indonesia and used as a second parameter for detection, is implemented to address the high false alarm rate. For the single-channel thermal radiance method, the utilization of the spatial comparison method eliminated 100% of the false alarms while maintaining every true anomaly. The NTI algorithm showed similar results with only 2 false alarms remaining. No definitive difference is observed between the two thermal detection methods for automated use; however, the single-channel thermal radiance method coupled with the SO2 mass abundance data can be used to interpret volcanic processes including the identification of lava dome activity at Sinabung as well as the mechanism for the dome emplacement (i.e. endogenous or exogenous). Only one technique, the brightness temperature difference (BTD) method, is used for the detection of ash. Trends of ash area, water/ice area, and their respective concentrations yield interpretations of increased ice formation, aggregation, and sedimentation processes that only a high-temporal resolution instrument like the MTSAT-2 can analyze. A conceptual model of a secondary zone of aggregation occurring in the migrating Kelut ash cloud, which decreases the distal fine-ash component and hazards to flight paths, is presented in this report. Unfortunately, SO2 data was unable to definitively reinforce the concept of a secondary zone of aggregation due to the lack of a sufficient temporal resolution. However, a detailed study of the Kelut SO2 cloud is used to determine that there was no climatic impacts generated from this eruption due to the atmospheric residence times and e-folding rate of ~14 days for the SO2. This report applies the complementary assets offered by utilizing a high-temporal and a high-spatial resolution satellite, and it demonstrates that these two instruments can provide unparalleled observations of dynamic volcanic processes.
Resumo:
This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
Background: Receptor Activator of Nuclear Factor kappaB Ligand (RANKL), a member of the TNF superfamily, contributes to the imbalance of bone resorption and immunoregulation in rheumatoid arthritis. In mice, collagen induced arthritis was exacerbated by IL-3 and anti-IgER antibodies, two mediators activating basophils that are known as effector cells of allergy. Interestingly, our unpublished microarray data revealed that IL-3 induces RANKL mRNA in human basophils. Here we further investigate under which conditions human basophils express surface and/or soluble RANKL. Methods: One part of purified human basophils was co-stimulated with IL-3 and either IgE-dependent or IgE-independent stimuli. The other part of purified basophils was first primed with IL-3 and subsequently triggered with IgE-dependent or IgE-independent stimuli. Expression of surface and soluble RANKL were detected by flow cytometry, ELISA and real-time PCR. Results: By flow cytometry we show that IL-3 induces de novo expression of surface RANKL on human basophils in a time and dose dependent manner. Co-stimulation of basophils with IL-3 and an IgE-dependent stimulus reduces IL-3-induced expression of surface RANKL in a dose dependent manner while IgE-independent stimuli have no effect. In contrast, both IgE-dependent and IgE-independent stimuli enhance expression of surface and soluble RANKL in basophils that were first primed with IL-3 and then triggered. Real-time PCR analysis shows that surface hRANKL1 and soluble hRANKL3 are induced by IL-3 and reduced by co-stimulation with IL-3 and an IgE-dependent stimulus and thus confirms our flow cytometry data. Conclusion: RANKL expression in human basophils is not only dependent on IL-3 and IgE-dependent/IgE-independent stimuli but also on the sequence of their addition to cell culture. Based on our data, we suggest that basophils might have previously unidentified functions in bone resorption or immunoregulation via RANKL.
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
Aim: We aimed to assess caries experience and microbiota in systemically healthy children with black stain (BS) and non-discoloured plaque. Methods: Forty-six children with BS and 47 counterparts with non-discoloured plaque aged 7.9 ± 1.3 years were clinically examined. Dental caries was scored using WHO criteria. Samples of BS and non-discoloured dental plaque were collected from tooth surfaces. The DNA of the samples was extracted and real-time PCR was performed to determine the total number of bacteria and the species Streptococcus mutans, S. sobrinus, Lactobacillus sp., Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Results: Children with BS had lower DMFT (p = 0.013), lower DT values (p = 0.005) and a tendency to lower caries prevalence (p = 0.061) than children with non-discoloured plaque. Plaque samples of the BS group contained higher numbers of A. naeslundii (p = 0.005) and lower numbers of F. nucleatum (p = 0.001) and Lactobacillus sp. (p = 0.001) compared to the non-discoloured plaque samples of the control group. Comparing the children with BS and non-discoloured plaque, higher counts for A. naeslundii (p = 0.013) were observed in caries-free children with BS while in caries-affected children with BS, lower counts of F. nucleatum (p = 0.007) were found. Counts of Lactobacillus sp. were higher in non-discoloured plaque samples than in BS of caries-free and caries-affected children. Conclusion: Results suggest that the different microbial composition of BS might be associated with the lower caries experience in affected subjects. The role of black-pigmented bacteria associated with periodontitis needs further studies. © 2013 S. Karger AG, Basel.