956 resultados para Oxygen reduction
Resumo:
The O2 and CO2 compensation points (O2 and CO2) of plants in a closed system depend on the ratio of CO2 and O2 concentrations in air and in the chloroplast and the specificities of ribulose bisphosphate carboxylase/oxygenase (Rubisco). The photosynthetic O2 is defined as the atmospheric O2 level, with a given CO2 level and temperature, at which net O2 exchange is zero. In experiments with C3 plants, the O2 with 220 ppm CO2 is 23% O2; O2 increases to 27% with 350 ppm CO2 and to 35% O2 with 700 ppm CO2. At O2 levels below the O2, CO2 uptake and reduction are accompanied by net O2 evolution. At O2 levels above the O2, net O2 uptake occurs with a reduced rate of CO2 fixation, more carbohydrates are oxidized by photorespiration to products of the C2 oxidative photosynthetic carbon cycle, and plants senesce prematurely. The CO2 increases from 50 ppm CO2 with 21% O2 to 220 ppm with 100% O2. At a low CO2/high O2 ratio that inhibits the carboxylase activity of Rubisco, much malate accumulates, which suggests that the oxygen-insensitive phosphoenolpyruvate carboxylase becomes a significant component of the lower CO2 fixation rate. Because of low global levels of CO2 and a Rubisco specificity that favors the carboxylase activity, relatively rapid changes in the atmospheric CO2 level should control the permissive O2 that could lead to slow changes in the immense O2 pool.
Resumo:
Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.
Electrospinning of silica sub-microtubes mats with platinum nanoparticles for NO catalytic reduction
Resumo:
Silica sub-microtubes loaded with platinum nanoparticles have been prepared in flexible non-woven mats using co-axial electrospinning technique. A partially gelated sol made from tetraethyl orthosilicate was used as the silica precursor, and oil was used as the sacrificial template for the hollow channel generation. Platinum has been supported on the wall of the tubes just adding the metallic precursor to the sol–gel, thus obtaining the supported catalyst by one-pot method. The silica tubes have a high aspect ratio with external/internal diameters of 400/200 nm and well-dispersed platinum nanoparticles of around 2 nm. This catalyst showed a high NO conversion with very high selectivity to N2 at mild conditions in the presence of excess oxygen when using C3H6 as reducing agent. This relevant result reveals the potential of this technique to produce nanostructured catalysts onto easy to handle conformations.
Resumo:
Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.
Resumo:
Sediment porewater oxygen profiles were measured with micro and needle electrodes in sediment cores of 27 stations in the Skagerrak (northeastern North Sea). Oxygen penetration depth ranged from 3 to 20 mm depth. Fluxes estimated from the oxygen gradients varied from 3 to 18 mmol m**-2 d**-1. Oxygen penetration and flux depend on water depth, but possibly more on the hydrological conditions, related to the import of fresh organic matter by primary production in the water column. Oxygen fluxes were not related to the total organic carbon (TOC) content of the sediments. Stations in the eastern part of the Skagerrak showed high burial rates of TOC. At 6 stations porewater chemistry of Fe, Mn and NO3- was strongly associated with the oxygen distribution. The average relative contribution of terminal electron acceptors to carbon mineralisation was estimated at 85% for O2, 0.5% for Mn, 4.5% for [NO3]3-, 1% for Fe and 9% for [SO4]2-. At one station the occurrence of exceptionally high solid manganese oxyhydroxides was probably related to an active internal manganese cycle.
Resumo:
Planktonic foraminiferal test fragmentation in three cores along a depth transect from the western equatorial Pacific (ERDC-93P, 1619 m; RC17-177, 2600 m; V28-238, 3120 m [Thompson, 1976]) were examined for the last 500 kyr at sample intervals from 2.5 to 5 kyr to study the fluctuations of dissolution in the western equatorial Pacific. The age models were constructed by correlating the delta18O records with the SPECMAP stack [Imbrie et al., 1984]. Results showed that intermediate and deep waters experienced the same patterns of dissolution through climatic cycles. Fragmentation varied with a greater amplitude, and the carbonate ion concentration changed less, in the deep than in the intermediate water. Dissolution has significant variance distributions and coherencies with delta18O over the 100, 41, and 23 kyr periods of orbital variations; dissolution maxima lag ice volume minima by 6 to 20 kyr. The dissolution variability was consistent with recent geochemical models which seek to explain the reduction of atmospheric CO2 concentration at the last glacial maximum [Broecker, 1982; Boyle, 1988].
Resumo:
Cover title.
Resumo:
We provide a reconstruction of atmospheric CO2 from deep-sea sediments, for the past 625000 years (Milankovitch chron). Our database consists of a Milankovitch template of sea-level variation in combination with a unique data set for the deep-sea record for Ontong Java plateau in the western equatorial Pacific. We redate the Vostok ice-core data of Barnola et al. (1987, doi:10.1038/329408a0). To make the reconstructions we employ multiple regression between deep-sea data, on one hand, and ice-core CO2 data in Antarctica, on the other. The patterns of correlation suggest that the main factors controlling atmospheric CO2 can be described as a combination of sea-level state and sea-level change. For best results squared values of state and change are used. The square-of-sea-level rule agrees with the concept that shelf processes are important modulators of atmospheric CO2 (e.g., budgets of shelf organic carbon and shelf carbonate, nitrate reduction). The square-of-change rule implies that, on short timescales, any major disturbance of the system results in a temporary rise in atmospheric CO2.
Resumo:
Research techniques and a methodology have been developed that enable the reduction kinetics of molten lead smelting slags with solid carbon to be studied. The rates of reduction of PbO-FeO-Fe2O3-CaO-SiO2 slags with carbon have been measured for a range of slag compositions for PbO concentrations between 3 and 100 weight percent, and temperatures between 1423 and 1573 K. The reduction rates were determined for both graphite and coke. Within the range of process conditions examined, it has been shown that the reaction rates are almost independent of carbon reactivity, SiO2/CaO and SiO2/Fe ratio in the range of compositions investigated and are not influenced by the presence of sulphur in the slag.The apparent first order rate constants for oxygen removal increase with increasing PbO concentration and oxygen activity in the slag. The data indicate that the rate limiting reaction step for the reduction of lead slags with solid carbon is the chemical reaction at the gas/slag interface.
Resumo:
Oxygen consumption rates (OCR), aerobic mineralization and sulfate reduction rates (SRR) were studied in the permeable carbonate reef sediments of Heron Reef, Australia. We selected 4 stations with different hydrodynamic regimes for this study. In situ oxygen penetration into the sediments was measured with an autonomous microsensor profiler. Areal OCR were quantified from the measured oxygen penetration depth and volumetric OCR. Oxygen penetration and dynamics (median penetration depths at the 4 stations ranged between 0.3 and 2.2 cm), OCR (median 57 to 196 mmol C m(-2) d(-1)), aerobic mineralization (median 24 to 176 mmol C m(-2) d(-1)) and SRR (median 9 to 42 mmol C m(-2) d(-1)) were highly variable between sites. The supply of oxygen by pore water advection was a major cause for high mineralization rates by stimulating aerobic mineralization at all sites. However, estimated bottom water filtration rates could not explain the differences in volumetric OCR and SRR between the 4 stations. This suggests that local mineralization rates are additionally controlled by factors other than current driven pore water advection, e.g. by the distribution of the benthic fauna or by local differences in labile organic carbon supply from sources such as benthic photosynthesis. Carbon mineralization rates were among the highest reported for coral reef sediments, stressing the role of these sediments in the functioning of the reef ecosystem.
Resumo:
Setf-supported asymmetric hollow-fiber membranes of mixed oxygen-ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) were prepared by a combined phase-inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA-citrate complexing process followed by thermal treatment at 600 degrees C. The powder was dispersed in a polymer solution and then extruded into hollow-fiber precursors through a spinneret. ne fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow-fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol-m(-2).s(-1) at 950 degrees C with the sweep gas flow rate of 0.522 mol(.)m(-2).s(-1). To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. (c) 2006 American Institute of Chemical Engineers.
Resumo:
1. The mechanism of action by which methotrexate (MTX) exerts its anti-inflammatory and immunosuppressive effects remains unclear. The aim of this study is to investigate the hypothesis that MTX exerts these effects via the production of reactive oxygen species (ROS). 2. Addition of MTX (100 nM-10 μM) to U937 monocytes induced a time and dose dependent increase in cytosolic peroxide [peroxide] cyt from 6-16 h. MTX also caused corresponding monocyte growth arrest, which was inhibited (P<0.05) by pre-treatment with N-acetylcysteine (NAC; 10 mM) or glutathione (GSH; 10 mM). In contrast, MTX induction of [peroxide] cyt in Jurkat T cells was more rapid (4 h; P<0.05), but was associated with significant apoptosis at 16 h at all doses tested (P<0.05) and was significantly inhibited by NAC or GSH (P<0.05). 3. MTX treatment of monocytes (10 nM-10 μM) for 16 h significantly reduced total GSH levels (P<0.05) independently of dose (P>0.05). However in T-cells, GSH levels were significantly elevated following 30 nM MTX treatment (P<0.05) but reduced by doses exceeding 1 μM compared to controls (P<0.05). 4. MTX treatment significantly reduced monocyte adhesion to 5 h and 24 h LPS (1 μg ml -1) activated human umbilical vein endothelial cells (HUVEC; P<0.05) but not to resting HUVEC. Pre-treatment with GSH prevented MTX-induced reduction in adhesion. 5. In conclusion, ROS generation by MTX is important for cytostasis in monocytes and cytotoxicity T-cells. Furthermore, MTX caused a reduction in monocyte adhesion to endothelial cells, where the mechanism of MTX action requires the production of ROS. Therefore its clinical efficacy can be attributed to multiple targets.
Resumo:
Ceramide (a sphingolipid) and reactive oxygen species (ROS) are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. It has been reported that synthesis of ceramide and ROS are intimately linked, and show reciprocal regulation. The levels of ceramide are reported to be elevated in atherosclerotic plaques providing circumstantial evidence for a pro-atherogenic role for ceramide. Indeed, LDL may be important sources of ceramide from sphingomyelin, where it promotes LDL aggregation. Using synthetic, short chain ceramides to mimic the cellular responses to fluctuations in natural endogenous ceramides, we have investigated ceramide effects on both intracellular redox state (as glutathione and ROS) and redox-sensitive gene expression, specifically the scavenger receptor CD36 (using RT-PCR and flow cytometry), in U937 monocytes and macrophages. We describe that the principal redox altering properties of ceramide are to lower cytosolic peroxide and to increase mitochondrial ROS formation, where growth arrest of U937 monocytes is also observed. In addition, cellular glutathione was depleted, which was independent of an increase in glutathione peroxidase activity. Examination of the effects of ceramide on stress induced CD36 expression in macrophages, revealed a dose dependent reduction in CD36 mRNA and protein levels, which was mimicked by N-acetyl cysteine. Taken together, these data suggest that ceramides differentially affect ROS within different cellular compartments, and that loss of cytosolic peroxide inhibits expression of the redox sensitive gene, CD36. This may attenuate both the uptake of oxidised LDL and the interaction of HDL with macrophages. The resulting sequelae in vivo remain to be determined.
Resumo:
Reactive oxygen species (ROS) and the sphingolipid ceramide are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. Furthermore, the enhanced production of many of these agents, that utilise ROS and ceramide as signalling intermediates, is associated with the aetiologies of several vascular diseases (e.g. atherosclerosis) or disorders of inflammatory origin (e.g. rheumatoid arthritis; RA). Excessive monocyte recruitment and uncontrolled T cell activation are both strongly implicated in the chronic inflammatory responses that are associated with these pathologies. Therefore the aims of this thesis are (1) to further elucidate the cellular responses to modulations in intracellular ceramide/ROS levels in monocytes and T cells, in order to help resolve the mechanisms of progression of these diseases and (2) to examine both existing agents (methotrexate) and novel targets for possible therapeutic manipulation. Utilising synthetic, short chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide or, stimulation of CD95 to induce ceramide formation, it is described here that ceramide targets and manipulates two discrete sites responsible for ROS generation, preceding the cellular responses of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells. In both cell types, transient elevations in mitochondrial ROS generation were observed. However, the prominent redox altering effects appear to be the ceramide-mediated reduction in cytosolic peroxide, the magnitude of which dictates in part the cellular response in U937 monocytes, Jurkat T-cells and primary human peripheral blood resting or PHA-activated T-cells in vitro. The application of synthetic ceramides to U937 monocytes for short (2 hours) or long (16 hours) treatment periods reduced the membrane expression of proteins associated with cell-cell interaction. Furthermore, ceramide treated U937 monocytes demonstrated reduced adhesion to 5 or 24 hour LPS activated human umbilical vein endothelial cells (HUVEC) but not resting HUVEC. Consequently it is hypothesised that the targeted treatment of monocytes from patients with cardiovascular diseases with short chain synthetic ceramide may reduce disease progression. Herein, the anti-inflammatory and immunosuppressant drug, methotrexate, is described to require ROS production for the induction of cytostasis or cytotoxicity in U937 monocytes and Jurkat T-cells respectively. Further, ROS are critical for methotrexate to abrogate monocyte interaction with activated HUVEC in vitro. The histological feature of RA of enhanced infiltration, survivability and hyporesponsiveness of T-cells within the diseased synovium has been suggested to arise from aberrant signalling. No difference in the concentrations of endogenous T-cell ceramide, the related lipid diacylglycerol (DAG) and cytosolic peroxide ex vivo was observed. TCR activation following PHA exposure in vitro for 72 hours did not induced maintained perturbations in DAG or ceramide in T-cells from RA patients or healthy individuals. However, T-cells from RA patients failed to upregulate cytosolic peroxide in response to PHA, unlike those from normals, despite expressing identical levels of the activation marker CD25. This inability to upregulate cytosolic peroxide may contribute to the T-cell pathology associated with RA by affecting the signalling capacity of redox sensitive biomolecules. These data highlight the importance of two distinctive cellular pools of ROS in mediating complex biological events associated with inflammatory disease and suggest that modulation of cellular ceramides represents a novel therapeutic strategy to minimise monocyte recruitment.
Resumo:
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.