447 resultados para Organometallic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactions of directly related tellurium and selenium heterocyclic compounds with triiron dodecacarbonyl are described. The reaction of 2-telluraphthalide, C8H8OTe with [Fe3(CO)12 gave [Fe{C6H4(CH2)Te}(CO)3]2, (1). An iron atom has inserted into the telluracyclic ring, and it is probable that one co-ordinated CO ligand arises from the initially organic carbonyl group. X-ray analysis of compound (1) showed that the compound has a Fe2Te2 core, which is achieved by dimerisation. The reaction of telluraphthalic anhydride, C8H402Te with [Fe3(CO)12] gave a known, but unexpected, organic phthalide product, C8H602, which was confirmed by X-ray crystallography. Selenaphthalic anhydride,  C8H4O2Se gave intractable products on reaction with [Fe3(CO)12], 2-selenaphthalide, C8H6OSe, on reaction with [Fe3(CO)12] gave a major product [Fe2{C6H4(CH2)Se}(CO)6], (2) and a minor product [Fe3{C6H4(CH2)Se}(CO)8], (3) which is an intermediate in the formation of (2). X-ray analysis of (2) shows that compound (2) is very similar to (1) except that the 18 electron rule is satisfied by co-ordination of a Fe(CO)3 moiety, rather than dimerisation. Compound (3), also studied by X-ray crystallography, differs from (2) mainly in the addition of an Fe(CO)2 moiety. Telluraphtbalic anhydride, C8H402Te, and selenaphthalic anhydride, C8H402Se, are both monoclinic and crystallise in space group P21/n. 2-Selenaphthalide, C8H402Se, is also monoclinic, space group P21/C. The reactions of the following compounds (l,3-dihydrobenzo[c]selenophene, 1,3,7,9-tetrahydrobenzo[1,2c; 4,5c'] ditellurophene, dibenzoselenophene, phenoxselenine, 3, 5-naphtho-1-telluracyclohexane and 3,5-naphtho-1-selenacyclohexane) with [Fe3lCO)12] are reported. It is unfortunate that the above compounds do not react under the conditions employed; this may be due to differing degrees of ring strain. 1,8-bis(bromomethyl)naphthalene, C12H10Br2 is monoclinic and crystallises in space group C2/c. 1,1-diiodo-3,5-naphthotelluracyclohexane, C12H10TeI2 and 3,5-naphtho-l-telluracyclohexane, C12H10Te are monoclinic and crystallise in space group P21/c. 3,5-naphtho-l-selenacyclohexane, C12H10Se and 2,2,8,8-tetraiodo-1,3,7,9-tetrahydrobenzo[1,2c;4,5c']ditellurophene are also monoclinic, space group P21/a. The syntheses of intramolecular stabilised organo-tellurium and selenium compounds are reported, having a general formula of REX (where R = phenylazophenyl; E = Se, Te; X = electronegative group, for example C1, Br or I). The crystal structures of R'TeBr, RTeI, RSeCI, RSeCI/I and RSeI (where R = phenylazophenyl) are reported. The tellurium containing X-ray structures are triclinic and have a space group P-1. The selenium containing X-ray structures are monoclinic with space group P21/n. The inclusion of nitrogen in selenium heterocycles provides access to an entirely new area of organometallic chemistry. The reaction of 2-methylbenzoselenazole with [Fe3(CO)12] gave [Fe2{C6H4(NCH2CH3)Se}(CO)6]. The reactions of 2-(methyltelluro)benzanilide or 2-(methylseleno)benzanilide with [Fe3(CO)12] gave reaction products [Fe2(μTeMe)2(CO)6] and [Fe2 (μ-SeMe)2(CO)6] respectively, which were confmned by X-ray crystallography. The use of Mossbauer spectroscopy on the products obtained from the reactions of heterocyclic compounds with [Fe3(CO)12] can give useful information, for example the number of iron sites and the environments of these iron sites within the products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper immobilized on a functionalized silica support is a good catalyst for the homocoupling of terminal alkynes. The so-called Glaser-Hay coupling reaction can be run in air with catalytic amounts of base. The copper catalyst is active for multiple substituted alkynes, in both polar and non-polar solvents, with good to excellent yields (75-95%). Depending on the alkyne, full conversion can be achieved within 3-24 h. The catalyst was characterized by TGA, inductively coupled plasma and X-ray photoelectron spectroscopy. Leaching tests confirm that the catalyst is and remains heterogeneous. Importantly, the overall reaction requires only alkyne and oxygen (in this case, air) as reagents, making this a clean catalytic oxidative coupling reaction. © 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface behaviour of materials is crucial to our everyday lives. Studies of the corrosive, reactive, optical and electronic properties of surfaces are thus of great importance to a wide range of industries including the chemical and electronics sectors. The surface properties of polymers can also be tuned for use in packaging, non stick coatings or for use in medical applications. Methods to characterise surface composition and reactivity are thus critical to the development of next generation materials. This report will outline the basic principles of X-ray photoelectron spectroscopy and how it can be applied to analyse the surfaces of inorganic materials. The role of XPS in understanding the nature of the active site in heterogeneous catalysts will also be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although group 14 organometallic compounds (Si, Sn) have been well developed as transmetallation reagents in cross-coupling reactions, the application of organogermanium compounds as cross-coupling reagents is still a relatively new area with few papers published. This study aimed to develop methods for the synthesis of new classes of vinyl germane and vinyl silane compounds, mainly Z and E tris(trimethylsilyl)germanes and silanes, which were then applied to Pd-catalyzed cross-couplings with aryl and alkenyl halides. The stereoselective radical-mediated desulfonylation of vinyl sulfones with tris(trimethyl)germanium or silane hydrides provided access to the synthesis of trans vinyl germanes or silanes. Alternatively hydrogermylation or hydrosilylation of terminal alkynes gave cis vinyl germanes or silanes. The application of these new classes of organometallic compounds in cross-coupling reactions with various aryl and alkenyl halides under aqueous [NaOH/H2O2/Pd(PPh 3)4] and anhydrous [KH/t-BuOOH/Pd(PPh 3)4] oxidative conditions were investigated. ^ It was found that the vinyl tris(trimethylsilyl)germanes successfully underwent Pd-catalyzed cross-couplings with aryl and alkenyl halides and aryl triflates under aqueous and anhydrous oxidative conditions. These procedures provided examples of "ligand-free" Pd-catalyzed coupling of organogermanes with aryl and alkenyl halides. Interestingly, couplings with fluorinated vinyl germanes appeared to occur more easily than with the corresponding (α-fluoro)vinyl stannanes and silanes since neither addition of an extra ligand nor activation with fluoride was necessary. The vinyl tris(trimethyl)silanes were found to be alternative substrates for the Hiyama reaction. The coupling of TTMS-silanes with various aryl, heteroaryl as well as alkenyl halides proceeded smoothly upon treatment with hydrogen peroxide in the presence of sodium hydroxide and fluoride ion. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antiviral or anticancer activities of C-5 modified pyrimidine nucleoside analogues validate the need for the development of their syntheses. In the first half of this dissertation, I explore the Pd-catalyzed cross-coupling reaction of allylphenylgermanes with aryl halides in the presence of SbF 5/TBAF to give various biaryls by transferring multiple phenyl groups, which has also been applied to the 5-halo pyrimidine nucleosides for the synthesis of 5-aryl derivatives. To avoid the use of organometallic reagents, I developed Pd-catalyzed direct arylation of 5-halo pyrimidine nucleosides. It was discovered that 5-aryl pyrimidine nucleosides could be synthesized by Pd-catalyzed direct arylation of N3-free 5-halo uracil and uracil nucleosides with simple arenes or heteroaromatics in the presence of TBAF within 1 h. Both N3-protected and N3-free uracil and uracil nucleosides could undergo base-promoted Pd-catalyzed direct arylation, but only with electron rich heteroaromatics. ^ In the second half of this dissertation, 5-acetylenic uracil and uracil nucleosides have been employed to investigate the hydrogermylation, hydrosulfonylation as well as hydroazidation for the synthesis of various functionalized 5-vinyl pyrimidine nucleosides. Hydrogermylation of 5-alkynyl uracil analogues with trialkylgermane or tris(trimethylsilyl)germane hydride gave the corresponding vinyl trialkylgermane, or tris(trimethylsilyl)germane uracil derivatives. During the hydrogermylation with triphenylgermane, besides the vinyl triphenylgermane uracil derivatives, 5-[2-(triphenylgermyl)acetyl]uracil was also isolated and characterized and the origin of the acetyl oxygen was clarified. Tris(trimethylsilyl)germane uracil derivatives were coupled to aryl halides but with decent yield. Iron-mediated regio- and stereoselective hydrosulfonylation of the 5-ethynyl pyrimidine analogues with sulfonyl chloride or sulfonyl hydrazine to give 5-(1-halo-2-tosyl)vinyluracil nucleoside derivatives has been developed. Nucleophilic substitution of the 5-(β-halovinyl)sulfonyl nucleosides with various nucleophiles have been performed to give highly functionalized 5-vinyl pyrimidine nucleosides via the addition-elimination mechanism. The 5-(β-keto)sulfonyluracil derivative has also been synthesized via the aerobic difunctionalization of 5-ethynyluracil analogue with sulfinic acid in the presence of catalytic amount of pyridine. Silver catalyzed hydroazidation of protected 2'-deoxy-5-ethynyluridine with TMSN3 in the presence of catalytic amount of water to give 5-(α-azidovinyl)uracil nucleoside derivatives was developed. Strain promoted Click reaction of the 5-(α-azidovinyl)uracil with cyclooctyne provide the corresponding fully conjugated triazole product.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and characterization of new organosilicon derivatives of N3P3Cl6, N3P3[NH(CH2)3Si(OEt)3]6 (1), N3P3[NH(CH2)3Si(OEt)3]3[NCH3(CH2)3CN]3 (2), and N3P3[NH(CH2)3Si(OEt)3]3[HOC6H4(CH2)CN]3 (3) are reported. Pyrolysis of 1, 2, and 3 in air and at several temperatures results in nanostructured materials whose composition and morphology depend on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products stem from the reaction of SiO2 with P2O5, leading to either crystalline Si5(PO4)6O, SiP2O7 or an amorphous phase as the glass Si5(PO4)6O/3SiO2·2P2O5, depending on the temperature and nature of the trimer precursors. From 1 at 800 °C, core−shell microspheres of SiO2 coated with Si5(PO4)6O are obtained, while in other cases, mesoporous or dense structures are observed. Atomic force microscopy examination after deposition of the materials on monocrystalline silicon wafers evidences morphology strongly dependent on the precursors. Isolated islands of size ∼9 nm are observed from 1, whereas dense nanostructures with a mean height of 13 nm are formed from 3. Brunauer−Emmett−Teller measurements show mesoporous materials with low surface areas. The proposed growth mechanism involves the formation of cross-linking structures and of vacancies by carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antiviral or anticancer activities of C-5 modified pyrimidine nucleoside analogues validate the need for the development of their syntheses. In the first half of this dissertation, I explore the Pd-catalyzed cross-coupling reaction of allylphenylgermanes with aryl halides in the presence of SbF5/TBAF to give various biaryls by transferring multiple phenyl groups, which has also been applied to the 5-halo pyrimidine nucleosides for the synthesis of 5-aryl derivatives. To avoid the use of organometallic reagents, I developed Pd-catalyzed direct arylation of 5-halo pyrimidine nucleosides. It was discovered that 5-aryl pyrimidine nucleosides could be synthesized by Pd-catalyzed direct arylation of N3-free 5-halo uracil and uracil nucleosides with simple arenes or heteroaromatics in the presence of TBAF within 1 h. Both N3-protected and N3-free uracil and uracil nucleosides could undergo base-promoted Pd-catalyzed direct arylation, but only with electron rich heteroaromatics. In the second half of this dissertation, 5-acetylenic uracil and uracil nucleosides have been employed to investigate the hydrogermylation, hydrosulfonylation as well as hydroazidation for the synthesis of various functionalized 5-vinyl pyrimidine nucleosides. Hydrogermylation of 5-alkynyl uracil analogues with trialkylgermane or tris(trimethylsilyl)germane hydride gave the corresponding vinyl trialkylgermane, or tris(trimethylsilyl)germane uracil derivatives. During the hydrogermylation with triphenylgermane, besides the vinyl triphenylgermane uracil derivatives, 5-[2-(triphenylgermyl)acetyl]uracil was also isolated and characterized and the origin of the acetyl oxygen was clarified. Tris(trimethylsilyl)germane uracil derivatives were coupled to aryl halides but with decent yield. Iron-mediated regio- and stereoselective hydrosulfonylation of the 5-ethynyl pyrimidine analogues with sulfonyl chloride or sulfonyl hydrazine to give 5-(1-halo-2-tosyl)vinyluracil nucleoside derivatives has been developed. Nucleophilic substitution of the 5-(β-halovinyl)sulfonyl nucleosides with various nucleophiles have been performed to give highly functionalized 5-vinyl pyrimidine nucleosides via the addition-elimination mechanism. The 5-(β-keto)sulfonyluracil derivative has also been synthesized via the aerobic difunctionalization of 5-ethynyluracil analogue with sulfinic acid in the presence of catalytic amount of pyridine. Silver catalyzed hydroazidation of protected 2'-deoxy-5-ethynyluridine with TMSN3 in the presence of catalytic amount of water to give 5-(α-azidovinyl)uracil nucleoside derivatives was developed. Strain promoted Click reaction of the 5-(α-azidovinyl)uracil with cyclooctyne provide the corresponding fully conjugated triazole product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the SNO+ neutrinoless double beta decay search, various backgrounds, ranging from impurities present naturally to those produced cosmogenically, must be understood and reduced. Cosmogenic backgrounds are particularly difficult to reduce as they are continually regenerated while exposed to high energy cosmic rays. To reduce these cosmogenics as much as possible the tellurium used for the neutrinoless double beta decay search will be purified underground. An analysis of the purification factors achievable for insoluble cosmogenic impurities found a reduction factor of $>$20.4 at 50\% C.L.. During the purification process the tellurium will come into contact with ultra pure water and nitric acid. These liquids both carry some cosmogenic impurities with them that could be potentially transferred to the tellurium. A conservative limit is set at $<$18 events in the SNO+ region of interest (ROI) per year as a result of contaminants from these liquids. In addition to cosmogenics brought underground, muons can produce radioactive isotopes while the tellurium is stored underground. A study on the rate at which muons produce these backgrounds finds an additional 1 event per year. In order to load the tellurium into the detector, it will be combined with 1,2-butanediol to form an organometallic complex. The complex was found to have minimal effect on the SNO+ acrylic vessel for 154 years.