942 resultados para Organic-inorganic nanocomposites
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Separation of microbial cells by flotation recovery is usually carried out in industrial reactors or wastewater treatment systems, which contain a complex mixture of microbial nutrients and excretion products. In the present study, the separation of yeast cells by flotation recovery was carried out using a simple flotation recovery systems containing washed yeast cells resuspended in water in order to elucidate the effects of additives (defined amounts of organic and inorganic acids, ethanol, surfactants and sodium chloride) on the cellular interactions at interfaces (cell/aqueous phase and cell/air bubble). When sodium chloride, organic acids (notably propionic, succinic and acetic acids) and organic surfactants (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and Nonidet P40) were added to the flotation recovery system, significant increases in the cell recovery of yeast hydrophobic cells (Saccharomyces cerevisiae, strain FLT-01) were observed. The association of ethanol to acetic acid solution (a minor by-product of alcoholic fermentation) in the flotation recovery system, containing washed cells of strain FLT-01 resuspended in water, leading to an increased flotation recovery at pH 5.5. Thus, the association among products of the cellular metabolism (e.g., ethanol and acetic acid) can improve yeast cell recovery by flotation recovery. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hybrid transparent and flexible siloxane-polypropyleneglycol (PPG) materials with covalent bonds between the inorganic (siloxane) and organic (polymeric) phases were prepared by sol-gel process. In order to improve the quality of the mechanical properties of these materials, different amounts of methyltriethoxysilane (MTES) were added to the initial sol. The effect of MTES addition on the structure of the composites was studied by Small-Angle X-Ray Scattering (SAXS) and Si-29 Nuclear Magnetic Resonance (Si-29 NMR). In absence of MTES, SAXS spectra exhibit a peak that is assigned to spatial correlation due to short range order between the siloxane clusters embedded in the polymeric phase. The experimental results indicate that, for low MTES concentrations ([MTES]/[O] less than or equal to 0.8, O: ether-type oxygen of PPG), the silicon species resulting from hydrolysis and condensation of MTES fill the open spaces between polymeric chains, interacting with the ether-type oxygens. For larger MTES content ([MTES]/[O] greater than or equal to 0.8), the number of free ether-type oxygen sites avalaible for reaction with such silicon species is not large enough. Consequently, a fraction of silicon species resulting from MTES addition graft to siloxane clusters formed by hydrolysis and condensation of the hybrid precursor. For all MTES concentrations the condensation degree of the siloxane phase, determined from Si-29 NMR spectroscopy, is high (> 69%), as expected under neutral pH synthesis conditions.
Resumo:
C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.
Resumo:
Zirconia-polymethylmetacrylate hybrids prepared by a sol-gel method were deposited by dip-coating on stainless steel to improve the resistance against wet corrosion. The effect of the concentration of polymethylmetacrylate and the number of coating applications on the microstructure and corrosion performance of coated samples was investigated. The microstructural properties of samples was analyzed by scanning electron and atomic force microscopy, adhesion tests and profilemeter measurements. The electrochemical corrosion was evaluated through potentiodynamic polarization curves at room temperature. Results show that the sample prepared with 17 vol.% of polymethylmethacrylate has a maximum corrosion resistance, smaller roughness, are hermetic and adherent to the substrate. This film increases the life time of the stainless steel by a factor 30. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The structure of silica-polypropyleneglycol (PPG) nanocomposites with weak physical bonds between the organic (PPG) and inorganic (silica) phase, prepared by the sol-gel process, was investigated by small angle X-ray scattering (SAXS). These nanocomposite materials are transparent, flexible, have good chemical stability and exhibit high ionic conductivity when doped with lithium salt. Their structure was studied as a function of silica weight fraction x (0.06 less than or equal to x less than or equal to 0.29) and [O]/[Li] ratio (oxygens being of ether-type). The shape of the experimental SAXS curves agrees with that expected for scattering intensity produced by fractal aggregates sized between 30 and 90 Angstrom. This result suggests that the structure of the studied hybrids consists of silica fractal aggregates embedded in a matrix of PPG. The correlation length of the fractal aggregates decreases and the fractal dimension increases for increasing silica content. The variations in structural parameters for increasing Li+ doping indicate that lithium ions favor the growth of fractal silica aggregates without modifying their internal structure and promote the densification of the oligomeric PPG matrix.
Resumo:
Silica-poly(oxypropylene) (PPO) nanocomposites containing PPO with weak physical bonds between the organic (PPO) and inorganic (silica) phases were obtained by the sol-gel procedure. Three precursor sols containing silica and PPO with molecular weights of 1000, 2000 and 4000g/mol were prepared. The structure changes during the whole sol-gel process, i.e. sol formation, sol-gel transition and gel aging and drying were investigated in situ by small angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and wet gels containing PPO of molecular weight 1000g/mol indicate that the aggregates formed during the studied process are fractal objects. Close to the sol-gel transition and during gel aging the fractal dimension is D=2.5. A clearly different structure evolution occurs in samples prepared with PPO with molecular weights 2000 and 4000 g/mol. Our SAXS results indicate the presence of two coexisting and well-defined structure levels, one of them corresponding to small silica clusters and the other to large silica aggregates. These two levels remain along the whole transformation. The SAXS curves of all dry samples are similar to those of the corresponding wet gels suggesting that no significant changes at nanoscopic scale occur during the drying process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A 90-day feeding experiment was conducted with sex reversed Nile tilapia (Oreochromis niloticus) fingerlings fed purified or practical diets supplemented with different zinc sources to evaluate fish growth performance and zinc and iron retention in fish bones, fillets, liver, skin and eyes. The relative bioavailability value (RBV) of zinc in the supplemental sources tested was also calculated. Fish were fed with isonitrogenous and isoenergetic purified or practical diets supplemented with 150 mg Zn kg -1, as zinc sulphate monohydrate (ZnSO 4), zinc oxide (ZnO) or zinc amino acid complex (Zn-AA). The feeding trial was conducted in 30, 50 L aquaria where four 0.66 ± 0.01 g (mean ± SD) fingerlings were initially stocked. No significant differences were observed for any growth performance variables (P > 0.05). In practical diets, only ZnSO 4 and ZnO presented bone zinc retention similar to that for the standard zinc source. Zinc concentration in the bone of fish fed practical diet supplemented with Zn-AA (171 ± 3.62 μg g -1) was significantly lower than that verified for the practical diets supplemented with the standard zinc source (200 ± 17.7 μg g -1) or with ZnSO 4 (204 ± 19.9 μg g -1). Assuming the concentration of zinc in bones as the response criterion, the supplemental zinc RBV from ZnSO 4 (105%) was higher than the RBV for Zn-AA (95.1%) or ZnO (94.9%). Iron concentration in the bones of animals fed the non-zinc-supplemented purified diet was significantly higher than that observed for purified diet supplemented with Zn-AA (P < 0,05). The results of the present work allowed us to conclude that ZnSO 4 in relation to ZnO or Zn-AA was the supplemental zinc source with higher zinc bioavailability to Nile tilapia. © 2005 Blackwell Publishing Ltd.
Resumo:
Nile tilapia Oreochromis niloticus fingerlings were fed with purified or practical diets, supplemented with 150 Ing Zn/kg, from different sources. Dry matter (DM), crude protein (CP), ether extract (EE), and gross energy (GE) apparent digestibility coefficients (ADC), as well as zinc, copper, calcium, and phosphorus apparent absorption coefficients (AAC) were determined by the addition of 0.1% chromic oxide to the diets. The supplemental zinc sources utilized were commercial grade zinc sulfate monohydrate (ZnSO 4), zinc oxide (ZnO) and a zinc amino acid complex (Zn-AA). Analytical grade zinc sulfate heptahydrate was also utilized as a standard reference zinc source. There was a significant difference between purified (74.9%) and practical (41.3%) zinc AAC for the ZnO supplemented diets (P < 0.05). The supplemental zinc sources presented similar AAC when purified diets were utilized. However, ZnSO 4 was the best supplemental zinc source when practical type diets were used. There were no significant differences between supplemental zinc AAC from ZnS0 4 (68.9%), and supplemental zinc AAC from Zn-AA (61.3%) in practical diets, but Zn-AA diet showed a statistically lower zinc AAC when compared with the standard zinc source diet (75.6%). The practical diet supplemented with ZnO had the worst supplemental zinc AAC (41.3%). Dietary copper (74.21%), calcium (70.9%), and phosphorus (71.9%) AAC of the practical diets supplemented with ZnO were statistically lower (P < 0.05) than the respective AAC of the practical ZnSO 4 supplemented diets (83.6%, 84.1%, 87.1%).The ADC of the practical ZnO supplemented diet for DM (76.3%), CP (88.6%), EE (82.4%), and GE (81.6%) were statiscally lower than the respective ADC of the ZnSO 4 practical diet (86.0, 92.7, 93.6, 89.6%, respectively) and those ADC of the Zn-AA practical diet (84.7, 92.7, 93.7, 88.2%, respectively) (P < 0.05). Hence, these results indicate that ZnSO 4 and Zn-AA have equivalent intestinal absorption as supplemental zinc sources for Nile tilapia juveniles and both are superior to ZnO. © Copyright by the World Aquaculture Society 2005.
Resumo:
Tinplate is one of the most widely used food canning materials, however, there are significant problems related to the use of tinplate cans, such as alterations in sensory features affecting food quality and corrosion phenomena of the canning material. To avoid corrosion problems different methods have been used for the passivation of tinplate such protective lacquers or different kinds of corrosion inhibitors (chromate and dichromate). However, chromates and dichromates are extremely harmful to the environment and can cause carcinogenic tumors to humans. An option, protective coatings obtained by the sol-gel process, act as a physical barrier, which isolates the surface of metal protecting from the corrosive agents. The aim of this work is to study the influence of addition of cerium (IV) ions in the inorganic and organic part of sol-gel processing in the formation of hybrid coatings based on siloxane-PMMA on tin plate. The coatings were obtained by dip-coating technique and evaluated by open circuit and impedance measurements, linear polarization and polarization curves obtained in 3.5% NaCl solution. The results have clearly shown the improvement on the protective properties of the Ce 4+ modified film when added into the organic phase, which can be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. © 2009 by NACE International.
Resumo:
Study objective was to evaluate economically a Nile tilapia juvenile production, employing different feeding techniques. Tilapia fingerlings of 8g were stocked at 5 fish m-2 stocking in 50 and 150 m2 ponds, during 75 days. Treatments were: inorganic fertilization (P205 and N); organic fertilization (poultry manure) and commercial ration (32% CP). Water quality results were considered adequate for fish rearing. In juvenile production there were significant differences among treatments for individual final weight, medians were: for inorganic fertilization 12.92g (13.35g in 50 m2 and 12.49g in 150 m2); for organic fertilization 30.55g (33.69g in 50 m2 and 27.40g in 150 m2) and for commercial ration 51.23g (52.90g in 50 m2 and 50.15g in 150 m2). Survival rate ranged from 63 to 71%, with no statistic difference. Commercial ration was effective to bigger juvenile production, with a better market value. Costs considered in economic analyses were tilapia fingerlings, fertilizer, ration, labor and installation depreciation. Obtained information showed that juvenile production in 50 m2 ponds is not viable economically and, in 150 m2, production is viable only when commercial ration is used.
Resumo:
This research was conducted with objective to evaluate the effect of different zinc (Zn) sources and doses in the diet for Santa Ines sheep. Forty lambs at weaning, with 18.4 kg of body weight were supplemented with three different sources of zinc (zinc oxide (ZnO), zinc amino acid and zinc proteinate) and three doses of zinc (200, 400 and 600 mg/kg DM) added to the basal diet. At every 28 days, animals were weighted and blood samples were collected for analyses of zinc (Zn), alkaline phosphatase and immunoglobulin G (IgG) and M (IgM). At the end of experiment, liver samples were collected for determination of the hepatic zinc levels. Zinc was analyzed with atomic absorption spectrophotometer, while phosphatase alkaline and immunoglobulins G and M were analyzed using Laborlab and Bioclin kits, respectively. There was no effect of diets on phosphatase alkaline levels and hepatic zinc, but there was difference in the plasmatic zinc levels and IgG and IgM levels. Based on the accumulation of hepatic zinc, the estimate of the zinc bioavailability, through the regression equation, showed that supplementation with organic and inorganic sources of zinc did not differ in the diet of Santa Ines sheep. © 2012 Sociedade Brasileira de Zootecnia.
Resumo:
A study was conducted to evaluate the s of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix); 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements); 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements); 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements); and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements). Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.