931 resultados para Optimal active power flow
Resumo:
In most classical frameworks for learning from examples, it is assumed that examples are randomly drawn and presented to the learner. In this paper, we consider the possibility of a more active learner who is allowed to choose his/her own examples. Our investigations are carried out in a function approximation setting. In particular, using arguments from optimal recovery (Micchelli and Rivlin, 1976), we develop an adaptive sampling strategy (equivalent to adaptive approximation) for arbitrary approximation schemes. We provide a general formulation of the problem and show how it can be regarded as sequential optimal recovery. We demonstrate the application of this general formulation to two special cases of functions on the real line 1) monotonically increasing functions and 2) functions with bounded derivative. An extensive investigation of the sample complexity of approximating these functions is conducted yielding both theoretical and empirical results on test functions. Our theoretical results (stated insPAC-style), along with the simulations demonstrate the superiority of our active scheme over both passive learning as well as classical optimal recovery. The analysis of active function approximation is conducted in a worst-case setting, in contrast with other Bayesian paradigms obtained from optimal design (Mackay, 1992).
Resumo:
It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always <1, >2/3, and often very close to 3/4. The 3/4 exponent emerges naturally from two models of resource distribution networks, radial explosion and hierarchically branched, which incorporate a minimum of specific details. Both models show that the exponent is 2/3 if velocity of flow remains constant, but can attain a maximum value of 3/4 if velocity scales with its maximum exponent, 1/12. Quarterpower scaling can arise even when there is no underlying fractality. The canonical “fourth dimension” in biological scaling relations can result from matching the velocity of flow through the network to the linear dimension of the terminal “service volume” where resources are consumed. These models have broad applicability for the optimal design of biological and engineered systems where energy, materials, or information are distributed from a single source.
Resumo:
This paper investigates the importance of ow of funds as an implicit incentive in the asset management industry. We build a two-period bi- nomial moral hazard model to explain the trade-o¤s between ow, per- formance and fees where e¤ort depends on the combination of implicit ( ow of funds) and explicit (performance fee) incentives. Two cases are considered. With full commitment, the investor s relevant trade-o¤ is to give up expected return in the second period vis-à-vis to induce e¤ort in the rst period. The more concerned the investor is with today s pay- o¤, the more willing he will be to give up expected return in the second period by penalizing negative excess return in the rst period. Without full commitment, the investor learns some symmetric and imperfect infor- mation about the ability of the manager to obtain positive excess return. In this case, observed returns reveal ability as well as e¤ort choices. We show that powerful implicit incentives may explain the ow-performance relationship with a numerical solution. Besides, risk aversion explains the complementarity between performance fee and ow of funds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)