982 resultados para Optical recording materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report discussed on a new high performance quantum dot based laser sources which demonstrated a record-high peak power and subpicosecond optical pulses in 1-1.3μm wavelength range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous strain and temperature measurement for advanced 3-D braided composite materials using fibre-optic sensor technology is demonstrated, for the first time. These advanced 3-D braided composites can virtually eliminate the most serious problem of delamination for conventional composites. A tandem in-fibre Bragg-grating (FBG)/extrinsic Fabry-Perot interferometric sensor (EFPI) system with improved accuracy has been used to facilitate simultaneous temperature and strain measurement in this work. The non-symmetric distortion of the optical spectrum of the FBG, due to the combination of the FBG and the EFPI, is observed for the first time. Experimental and theoretical studies indicate that this type of distortion can affect the measurement accuracy seriously and it is mainly caused by the modulation of the periodic output of the EFPI. A simple method has been demonstrated to improve the accuracy for detection of the wavelength-shift of the FBG induced by temperature change. A strain accuracy of ∼ ±20 με and a temperature accuracy of ∼ ±1 °C have been achieved, which can meet the requirements for practical applications of 3-D braided composites. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determination of the so-called optical constants (complex refractive index N, which is usually a function of the wavelength, and physical thickness D) of thin films from experimental data is a typical inverse non-linear problem. It is still a challenge to the scientific community because of the complexity of the problem and its basic and technological significance in optics. Usually, solutions are looked for models with 3-10 parameters. Best estimates of these parameters are obtained by minimization procedures. Herein, we discuss the choice of orthogonal polynomials for the dispersion law of the thin film refractive index. We show the advantage of their use, compared to the Selmeier, Lorentz or Cauchy models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare monochromatic aberrations of keratoconic eyes when uncorrected, corrected with spherically-powered RGP (rigid gas-permeable) contact lenses and corrected using simulations of customised soft contact lenses for different magnitudes of rotation (up to 15°) and translation (up to 1mm) from their ideal position. Methods: The ocular aberrations of examples of mild, moderate and severe keratoconic eyes were measured when uncorrected and when wearing their habitual RGP lenses. Residual aberrations and point-spread functions of each eye were simulated using an ideal, customised soft contact lens (designed to neutralise higher-order aberrations, HOA) were calculated as a function of the angle of rotation of the lens from its ideal orientation, and its horizontal and vertical translation. Results: In agreement with the results of other authors, the RGP lenses markedly reduced both lower-order aberrations and HOA for all three patients. When compared with the RGP lens corrections, the customised lens simulations only provided optical improvements if their movements were constrained within limits which appear to be difficult to achieve with current technologies. Conclusions: At the present time, customised contact lens corrections appear likely to offer, at best, only minor optical improvements over RGP lenses for patients with keratoconus. If made in soft materials, however, these lenses may be preferred by patients in term of comfort. © 2012 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation from experimental data, of physical quantities, which enter into the electromagnetic Maxwell equations, is described as inverse optical problem. The functional relations between the dependent and independent variables are of transcendental character and numeric procedures for evaluation of the unknowns are largely used. Herein, we discuss a direct approach to the solution, illustrated by a specific example of determination of thin films optical constants from spectrophotometric data. New algorithm is proposed for the parameters evaluation, which does not need an initial guess of the unknowns and does not use iterative procedures. Thus we overcome the intrinsic deficiency of minimization techniques, such as gradient search methods, Simplex methods, etc. The price of it is a need of more computing power, but our algorithm is easily implemented in structures such as grid clusters. We show the advantages of this approach and its potential for generalization to other inverse optical problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in POFBG to improve its performance. A significant improvement in the response time has been achieved in a laser etched D-shaped POFBG humidity sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials that combine photoluminescence, optical transparency and facile processability are of high importance in many applications. This article reports on the development of photoluminescent poly(methyl methacrylate) materials based on novel highly emissive anionic molybdenum cluster complex [{Mo6I8}(OTs)6]2– (where OTs– is the p-toluenesulfonate ion). The materials were obtained by both solution and bulk copolymerisation of methyl methacrylate and (dMDAEMA)2[{Mo6I8}(OTs)6], where dMDAEMA+ is the polymerisable cation [2-(methacryloyloxy)ethyl]dimethyl-dodecylammonium. Evaluation of the resultant hybrid materials showed that one could combine the excellent photoluminescent properties of the cluster complex with the transparency and processability of PMMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical fibre based sensors are transforming industry by permitting monitoring in hitherto inaccessible environments or measurement approaches that cannot be reproduced using conventional electronic sensors. A multitude of techniques have been developed to render the fibres sensitive to a wide range of parameters including: temperature, strain, pressure (static and dynamic), acceleration, rotation, gas type, and specific biochemical species. Constructed entirely of glass or polymer material, optical fibre devices like fibre gratings offer the properties: low loss, dielectric construction, small size, multiplexing, and so on [1-3]. In this paper, the authors will show the latest developing industrial applications, using polymer optical fibre (POF) devices, and comparing their performance with silica optical fibre devices. The authors address two pressing commercial requirements. The first concerns the monitoring of fuel level in civil aircraft. There is a strong motivation in the aerospace industry to move away from electrical sensors, especially in the fuel system. This is driven by the need to eliminate potential ignition hazards, the desire to reduce cabling weight and the need to mitigate the effects of lightning strikes in aircraft where the conventional metallic skin is increasingly being replaced by composite materials. In this case, the authors have developed pressure sensors based on a diaphragm in which a polymer fibre Bragg grating (POFBG) has been embedded [3]. These devices provide high pressure sensitivity enabling level measurement in the mm range. Also, it has developed an approach incorporating several such sensors which can compensate for temperature drifts and is insensitive to fluid density. Compared with silica fibre-based sensors, their performance is highly enhanced. Initial results have attracted the interest of Airbus from UK, who is keen to explore the potential of optical technology in commercial aircraft. The second concerns the monitoring of acoustic signals and vibration in the subsea environment, for applications in geophysical surveying and security (detection of unwanted craft or personnel). There is strong motivation to move away from electrical sensors due to the bulk of the sensor and associated cabling and the impossibility of monitoring over large distances without electrical amplification. Optical approaches like optical hydrophones [5] offer a means of overcoming these difficulties. In collaboration with Kongsberg from Norway, the authors will exploit the sensitivity improvements possible by using POF instead of silica fibre. These improvements will arise as a result of the much more compliant nature of POF compared to silica fibre (3 GPa vs 72 GPa, respectively). Essentially, and despite the strain sensitivity of silica and POFBGs being very similar, this renders the POF much more sensitive to the applied stress resulting from acoustic signals or vibration. An alternative way of viewing this is that the POF is better impedance-matched to the surrounding environment (water for the intended applications), because although its impedance is higher than that of water, it is nearly an order of magnitude smaller than that of silica. Finally, other future industrial applications will be presented and discussed, showing the vast range of the optical fiber devices in sensing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photo-activated disinfection is beginning to be used in dental surgery to treat deep seated bacterial infection. It works by combining a photosensitiser and light of a specific frequency to generate singlet oxygen which is toxic to many types of bacteria. It is suggested that this technique could be used as a means to help treat infection more generally. To do so, it needs to work with materials and geometries exhibiting different physical and optical characteristics to teeth. In these trials, samples of stainless steel and polymethylmethacrylate were exposed to bacterial solutions of Staphylococcus aureus and Staphylococcus epidermis. These were treated with tolonium chloride-based photo-activated disinfection regimes showing positive results with typically 4 log10 reductions in colony forming units. Tests were also carried out using slotted samples to represent geometric features which might be found on implants. These tests, showed disinfectant effect however to a much lesser degree. © 2011 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The features of the Furnace Chemical Vapor Deposition (FCVD) method of manufacturing preforms for special optical fibers are considered. It is shown that misalignment of substrate silica tube and furnace hole axes has a negative effect on the quality of fabricated preforms, leading to angular and radial asymmetry of the refractive index profile. Ways of getting rid of this and other disadvantages of the FCVD method are described. Some advantages of the FCVD method over the MCVD method are shown. It was demonstrated that the FCVD method, despite some drawbacks, allows to manufacture high-quality fiber preforms with good symmetry of the refractive index profile, and thus it is promising for fabrication of dispersion, dispersion varying and active fibers. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact and tunable semiconductor terahertz sources providing direct electrical control, efficient operation at room temperatures and device integration opportunities are of great interest at the present time. One of the most well-established techniques for terahertz generation utilises photoconductive antennas driven by ultrafast pulsed or dual wavelength continuous wave laser systems, though some limitations, such as confined optical wavelength pumping range and thermal breakdown, still exist. The use of quantum dot-based semiconductor materials, having unique carrier dynamics and material properties, can help to overcome limitations and enable efficient optical-to-terahertz signal conversion at room temperatures. Here we discuss the construction of novel and versatile terahertz transceiver systems based on quantum dot semiconductor devices. Configurable, energy-dependent optical and electronic characteristics of quantum-dot-based semiconductors are described, and the resonant response to optical pump wavelength is revealed. Terahertz signal generation and detection at energies that resonantly excite only the implanted quantum dots opens the potential for using compact quantum dot-based semiconductor lasers as pump sources. Proof-of-concept experiments are demonstrated here that show quantum dot-based samples to have higher optical pump damage thresholds and reduced carrier lifetime with increasing pump power.