997 resultados para OSMOTIC REGULATION
Resumo:
Several lines of evidence suggest that cancer progression is associated with up-regulation or reactivation of telomerase and the underlying mechanism remains an active area of research. The heterotrimeric MRN complex, consisting of Mre11, Rad50 and Nbs1, which is required for the repair of double-strand breaks, plays a key role in telomere length maintenance. In this study, we show significant differences in the levels of expression of MRN complex subunits among various cancer cells and somatic cells. Notably, siRNA-mediated depletion of any of the subunits of MRN complex led to complete ablation of other subunits of the complex. Treatment of leukemia and prostate cancer cells with etoposide lead to increased expression of MRN complex subunits, with concomitant decrease in the levels of telomerase activity, compared to breast cancer cells. These studies raise the possibility of developing anti-cancer drugs targeting MRN complex subunits to sensitize a subset of cancer cells to radio- and/or chemotherapy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Taking advantage of the degeneracy of the genetic code we have developed a novel approach to introduce, within a gene, DNA sequences capable of adopting unusual structures and to investigate the role of such sequences in regulation of gene expression in vivo. We used a computer program that generates alternative codon sequences for the same amino-acid sequence to convert a stretch of nucleotides into an inverted-repeat sequence with the potential to adopt cruciform structure. This approach was used to replace a 51-base-pair EcoRI-HindIII segment in the N-terminal region of the beta-galactosidase gene in plasmid pUC19 with a 51-bp synthetic oligonucleotide sequence with the potential to adopt a cruciform structure with 18 bp in the stem region. In selecting the 51-bp sequence, care was taken to include those codons that are preferred in E. coli. E. coli DH5-alpha cells harbouring the plasmid containing the redesigned sequence showed drastic reduction in expression of the beta-galactosidase gene compared to cells harbouring the plasmid with the native sequence. This approach demonstrates the possibility of introducing DNA secondary-structure elements to alter regulation of gene expression in vivo.
Resumo:
Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of Percoll purified Leydig cell proteins from 20- and 120-day-old rats revealed a significant decrease in a low molecular weight peptide in the adult rats. Administration of human chorionic gonadotropin to immature rats resulted in a decrease in the low molecular weight peptide along with increase in testosterone production. Modulation of the peptide by human chorionic gonadotropin could be confirmed by Western blotting. The presence of a similar peptide could be detected by Western blotting in testes of immature mouse, hamster, guinea pig but not in adrenal, placenta and corpus luteum. Administration of testosterone propionate which is known to inhibit the pituitary luteinizing hormone levels in adult rats resulted in an increase in the low molecular weight peptide, as checked by Western blotting. It is suggested that this peptide may have a role in regulation of acquisition of responsiveness to luteinizing hormone by immature rat Leydig cells.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
The activity of glutamine synthetase isolated from the germinated seedlings of Phaseolus aureus was regulated by feedback inhibition by alanine, glycine, histidine, AMP, and ADP. When glutamate was the varied substrate, alanine, histidine, and glycine were partial noncompetitive, competitive, and mixed-type inhibitors, respectively. The type of inhibition by these amino acids was confirmed by fractional inhibition analysis. The adenine nucleotides, AMP and ADP, completely inhibited the enzyme activity and were competitive with respect to ATP. Multiple inhibition analyses revealed the presence of separate and nonexclusive binding sites for the amino acids and mutually exclusive sites for adenine nucleotides. Cumulative inhibition was observed with these end products.
Resumo:
The mechanism underlying homeostatic regulation of the plasma levels of free retinol-binding protein and free thyroxine, the systemic distribution of which is of great importance, has been investigated. A simple method has been developed to determine the rate of dissociation of a ligand from the binding protein. Analysis of the dissociation process of retinol-binding protein from prealbumin-2 reveals that the free retinol-binding protein pool undergoes massive flux, and the prealbumin-2 participates in homeostatic regulation of the free retinol-binding protein pool. Studies on the dissociation process of thyroxine from its plasma carrier proteins show that the various plasma carrier proteins share two roles. Of the two types of protein, the thyroxine-binding globulin (the high affinity binding protein) contributes only 27% of the free thyroxine in a rapid transition process, despite its being the major binding protein. But prealbumin-2, which has lower affinity towards thyroxine, participates mainly in a rapid flux of the free thyroxine pool. Thus thyroxine-binding globulin acts predominantly as a plasma reservoir of thyroxine, and also probably in the �buffering� action on plasma free thyroxine level, in the long term, while prealbumin-2 participates mainly in the maintainance of constancy of free thyroxine levels even in the short term. The existence of these two types of binding protein facilitates compensation for the metabolic flux of the free ligand and maintenance of the thyroxine pool within a very narrow range.
Resumo:
Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (p(pi)) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.
Resumo:
The purpose of this research project was to understand the steps of the retrotransposon BARE (BArley REtrotransposon) life cycle, from regulation of transcription to Virus-Like Particle (VLP) formation and ultimate integration back into the genome. Our study concentrates mainly on BARE1 transcriptional regulation because transcription is the crucial first step in the retrotransposon life cycle. The BARE element is a Class I LTR (Long Terminal Repeat) retrotransposon belonging to the Copia superfamily and was originally isolated in our research group. The LTR retrotransposons are transcribed from promoters in the LTRs and encode proteins for packaging of their transcripts, the reverse transcription of the transcripts into cDNA, and integration of the cDNA back into the genome. BARE1 is translated as a single polyprotein and cleaved into the capsid protein (GAG), integrase (IN), and reverse transcriptase-RNaseH (RT-RH) by the integral aspartic proteinase (AP). The BARE retrotransposon family comprises more than 104 copies in the barley (Hordeum vulgare) genome. The element is bound by long terminal repeats (LTRs, 1829 bp) containing promoters required for replication, signals for RNA processing, and motifs necessary for the integration of the cDNA. Members of the BARE1 subfamily are transcribed, translated, and form virus-like particles. Several basic questions concerning transcription are explored in the thesis: BARE1 transcription control, promoter choice in different barley tissues, start and termination sites for BARE transcripts, and BARE1 transcript polyadenylation (I). Polyadenylation is an important step during mRNA maturation, and determines its stability and translatability among other characteristics. Our work has found a novel way used by BARE1 to make extra GAG protein, which is critical for VLP formation. The discovery that BARE1 uses one RNA population for protein synthesis and another RNA population for making cDNA has established the most important step of the BARE1 life cycle (III). The relationship between BARE1 and BARE2 has been investigated. Besides BARE, we have examined the retrotransposon Cassandra (II), which uses a very different transcriptional mechanism and a fully parasitic life cycle. In general, this work is focused on BARE1 promoter activity, transcriptional regulation including differential promoter usage and RNA pools, extra GAG protein production and VLP formation. The results of this study give new insights into transcription regulation of LTR retrotransposons.